
Section 2.4: R is uncountable

Our goal in this section is to show that the set R of real numbers is
uncountable or non-denumerable; this means that its elements cannot be
listed, or cannot be put in bijective correspondence with the natural
numbers.

We saw at the end of Section 2.3 that R has the same cardinality as the
interval (−π

2 ,
π
2 ), or the interval (−1, 1), or the interval (0, 1). We will

show that the open interval (0, 1) is uncountable.
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(0, 1) is uncountable

This assertion and its proof date back to the 1890’s and to Georg
Cantor. The proof is often referred to as “Cantor’s diagonal argument”
and applies in more general contexts than we will see in these notes.

Georg Cantor : born in St Petersburg (1845), died in Halle (1918)

Theorem 44

The open interval (0, 1) is not a countable set.

Dr Rachel Quinlan MA180/MA186/MA190 Calculus R is uncountable 145 / 218



The open interval (0, 1) is not a countable set

We recall precisely what this set is.

It consists of all real numbers that are greater than zero and less
than 1, or equivalently of all the points on the number line that are
to the right of 0 and to the left of 1.

It consists of all numbers whose decimal representation have only 0
before the decimal point (except 0.000 ... which is equal to 0, and
0.99999 ... which is equal to 1).

Note that the digits after the decimal point may terminate in an
infinite string of zeros, or may have a repeating pattern to their
digits, or may not have either of these properties. The interval (0, 1)
includes all these possibilities.
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A hypothetical bijective correspondence

Our goal is to show that the interval (0, 1) cannot be put in bijective
correspondence with the set N of natural numbers. Our strategy is to
show that no attempt at constructing a bijective correspondence between
these two sets can ever be complete; it can never involve all the real
numbers in the interval (0, 1) no matter how it is devised.
So imagine that we had a listing of the elements of the interval (0, 1).
Such a correspondence would have to look something like the following.

N (0, 1)

1 ←→ 0.13567324 ...
2 ←→ 0.10000000 ...
3 ←→ 0.32323232 ...
4 ←→ 0.56834662 ...
5 ←→ 0.79993444 ...
...

...
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Can this list be complete?

Our problem is to show that no matter how the right hand column is
constructed, it can’t contain every sequence of digits from 1 to 9. We do
this by exhibiting an example of a sequence that can’t possibly be there.

N (0, 1)

1 ←→ 0.13567324 ...
2 ←→ 0.10000000 ...
3 ←→ 0.32323232 ...
4 ←→ 0.56834662 ...
5 ←→ 0.79993444 ...
...

...
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Can this list be complete?

Our problem is to show that no matter how the right hand column is
constructed, it can’t contain every sequence of digits from 1 to 9. We do
this by exhibiting an example of a sequence that can’t possibly be there.

N (0, 1)

1 ←→ 0.13567324 ...
2 ←→ 0.10000000 ...
3 ←→ 0.32323232 ...
4 ←→ 0.56834662 ...
5 ←→ 0.79993444 ...
...

...

Look at the first digit after the decimal point in Item 1 in the list. If this
is 1, write 2 as the first digit after the decimal point in x . Otherwise,
write 1 as the first digit after the decimal point in x . So x differs in its
first digit from Item 1 in the list.

Dr Rachel Quinlan MA180/MA186/MA190 Calculus R is uncountable 148 / 218



Can this list be complete?

Our problem is to show that no matter how the right hand column is
constructed, it can’t contain every sequence of digits from 1 to 9. We do
this by exhibiting an example of a sequence that can’t possibly be there.

N (0, 1)

1 ←→ 0.13567324 ...
2 ←→ 0.10000000 ...
3 ←→ 0.32323232 ...
4 ←→ 0.56834662 ...
5 ←→ 0.79993444 ...
...

...

Look at the second digit after the decimal point in Item 2 in the list. If
this is 1, write 2 as the second digit after the decimal point in x .
Otherwise, write 1 as the second digit after the decimal point in x . So x
differs in its second digit from Item 2 in the list.
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Can this list be complete?

Our problem is to show that no matter how the right hand column is
constructed, it can’t contain every sequence of digits from 1 to 9. We do
this by exhibiting an example of a sequence that can’t possibly be there.

N (0, 1)

1 ←→ 0.13567324 ...
2 ←→ 0.10000000 ...
3 ←→ 0.32323232 ...
4 ←→ 0.56834662 ...
5 ←→ 0.79993444 ...
...

...

Look at the third digit after the decimal point in Item 3 in the list. If this
is 1, write 2 as the third digit after the decimal point in x . Otherwise,
write 1 as the third digit after the decimal point in x . So x differs in its
third digit from Item 3 in the list.
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Can this list be complete?

Our problem is to show that no matter how the right hand column is
constructed, it can’t contain every sequence of digits from 1 to 9. We do
this by exhibiting an example of a sequence that can’t possibly be there.

N (0, 1)

1 ←→ 0.13567324 ...
2 ←→ 0.10000000 ...
3 ←→ 0.32323232 ...
4 ←→ 0.56834662 ...
5 ←→ 0.79993444 ...
...

...

Continue to construct x digit by digit in this manner. At the nth stage,
look at the nth digit after the decimal point in Item n in the list. If this
is 1, write 2 as the nth digit after the decimal point in x . Otherwise,
write 1 as the nth digit after the decimal point in x . So x differs in its
nth digit from Item n in the list.
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Cantor’s Diagonal Argument

What this process constructs is an element x of the interval (0, 1) that
does not appear in the proposed list. The number x is not Item 1 in the
list, because it differs from Item 1 in its 1st digit, it is not Item 2 in the
list because it differs from Item 2 in its 2nd digit, it is not Item n in the
list because it differs from Item n in its nth digit.

Note:

In our example, the number x would start 0.21111 ... .
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Cantor’s Diagonal Argument

What this process constructs is an element x of the interval (0, 1) that
does not appear in the proposed list. The number x is not Item 1 in the
list, because it differs from Item 1 in its 1st digit, it is not Item 2 in the
list because it differs from Item 2 in its 2nd digit, it is not Item n in the
list because it differs from Item n in its nth digit.

Note:

In our example, the number x would start 0.21111 ... .

According to our construction, our x will always have all its digits
equal to 1 or 2. So not only have we shown that the interval (0, 1)
is uncountable, we have even shown that the set of all numbers in
this interval whose digits are all either 1 or 2 is uncountable.
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Cantor’s Diagonal Argument

What this process constructs is an element x of the interval (0, 1) that
does not appear in the proposed list. The number x is not Item 1 in the
list, because it differs from Item 1 in its 1st digit, it is not Item 2 in the
list because it differs from Item 2 in its 2nd digit, it is not Item n in the
list because it differs from Item n in its nth digit.

Note:

In our example, the number x would start 0.21111 ... .

According to our construction, our x will always have all its digits
equal to 1 or 2. So not only have we shown that the interval (0, 1)
is uncountable, we have even shown that the set of all numbers in
this interval whose digits are all either 1 or 2 is uncountable.

A challenging exercise : why would the same proof not succeed in
showing that the set of rational numbers in the interval (0, 1) is
uncountable?
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More on Cantor

Informally, Cantor’s diagonal argument tells us that the “infinity” that is
the cardinality of the real numbers is “bigger” than the “infinity” that is
the cardinality of the natural numbers, or integers, or rational numbers.
He was able to use the same argument to construct examples of infinite
sets of different (and bigger and bigger) cardinalities. So he actually
established the notion of infinities of different magnitudes.
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More on Cantor

Informally, Cantor’s diagonal argument tells us that the “infinity” that is
the cardinality of the real numbers is “bigger” than the “infinity” that is
the cardinality of the natural numbers, or integers, or rational numbers.
He was able to use the same argument to construct examples of infinite
sets of different (and bigger and bigger) cardinalities. So he actually
established the notion of infinities of different magnitudes.

The work of Cantor was not an immediate hit within his own lifetime. It
met some opposition from the finitist school which held that only
mathematical objects that can be constructed in a finite number of steps
from the natural numbers could be considered to exist. Foremost among
the proponents of this viewpoint was Leopold Kronecker.
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Kronecker

Leopold Kronecker (1823-1891)

God made the integers, all else is the work of man.
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Kronecker

Leopold Kronecker (1823-1891)

God made the integers, all else is the work of man.

What good your beautiful proof on π? Why investigate such
problems, given that irrational numbers do not even exist?
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Hilbert

Cantor had influential admirers too, among them David Hilbert, who set
the course of much of 20th Century mathematics in his address to the
International Congress of Mathematicians in Paris in 1900.

David Hilbert (1862-1943)

No one shall expel us from
the paradise that Cantor
has created for us.
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Hilbert

Cantor had influential admirers too, among them David Hilbert, who set
the course of much of 20th Century mathematics in his address to the
International Congress of Mathematicians in Paris in 1900.

David Hilbert (1862-1943)

No one shall expel us from
the paradise that Cantor
has created for us.

What new methods and
new facts in the wide and
rich field of mathematical
thought will the new cen-
turies disclose?
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The Continuum Hypothesis

Hilbert’s address to the Paris Congress is one of the most famous
mathematical lectures ever. In it he posed 23 unsolved problems, the first
of which was Cantor’s Continuum Hypothesis.

The Continuum Hypothesis proposes that every subset of R is either
countable (i.e. has the same cardinality as N or Z or Q) or has the same
cardinality as R.

This seems like a question to which the answer should be either a
straightforward yes or no.
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The Continuum Hypothesis

Hilbert’s address to the Paris Congress is one of the most famous
mathematical lectures ever. In it he posed 23 unsolved problems, the first
of which was Cantor’s Continuum Hypothesis.

The Continuum Hypothesis proposes that every subset of R is either
countable (i.e. has the same cardinality as N or Z or Q) or has the same
cardinality as R.

It took the work of Kurt Gödel in the 1930s and Paul Cohen in the 1960s
to reach the conclusion that the answer to this question of Cantor is
undecidable. This means essentially that the standard axioms of set
theory do not provide enough structure to determine the answer to the
question.
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The Continuum Hypothesis

Hilbert’s address to the Paris Congress is one of the most famous
mathematical lectures ever. In it he posed 23 unsolved problems, the first
of which was Cantor’s Continuum Hypothesis.

The Continuum Hypothesis proposes that every subset of R is either
countable (i.e. has the same cardinality as N or Z or Q) or has the same
cardinality as R.

Both the Continuum Hypothesis and its negation are consistent with the
working rules of mathematics. People who work in set theory can
legitimately assume that either the Continuum Hypothesis is satisfied or
not. Fortunately most of us can get on with our mathematical work
without having to worry about this very often.
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The Continuum Hypothesis

Hilbert’s address to the Paris Congress is one of the most famous
mathematical lectures ever. In it he posed 23 unsolved problems, the first
of which was Cantor’s Continuum Hypothesis.

The Continuum Hypothesis proposes that every subset of R is either
countable (i.e. has the same cardinality as N or Z or Q) or has the same
cardinality as R.

References for this stuff:

1 Reuben Hersh, What is Mathematics, Really? Oxford University
Press, 1997

2 Eugenia Cheng, Beyond Infinity, Profile Books, 2017
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Note on Exam Questions

From the Summer 2015 exam:

Q2 (a) Give an example of

(i) An infinite subset of R in which every element is negative.

(ii) A subset of R that is bounded above but not below.

(iii) A subset of R that is infinite, countable and bounded.
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Learning Outcomes for Section 2.4

After studying this section you should be able to

Use Cantor’s diagonal argument to prove that the interval (0, 1) is
uncountable.

Make a few remarks about the history of this discovery.
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Section 2.5 : The Completeness Axiom in R

The rational numbers and real numbers are closely related.

The set Q of rational numbers is countable and the set R of real
numbers is not, and in this sense there are many more real numbers
than rational numbers.

However, Q is “dense” in R. This means that every interval of the
real number line, no matter how short, contains infinitely many
rational numbers. This statement has a practical impact as well,
which we use all the time.

Lemma 45

Every real number (whether rational or not) can be approximated by a
rational number with a level of accuracy as high as we like.
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Justification for this claim

3 is a rational approximation for π.

3.1 is a closer one.

3.14 is closer again.

3.14159 is closer still.

3.1415926535 is even closer than that,

and we can keep improving on this by truncating the decimal expansion
of π at later and later stages.
If we want a rational approximation that differs from the true value of π
by less than 10−20 we can truncate the decimal approximation of π at
the 21st digit after the decimal point. This is what is meant by “a level
of accuracy as high as we like” in the statement of the lemma.
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Notes

1 The fact that all real numbers can be approximated with arbitrary
closeness by rational numbers is used all the time in everyday life.
Computers basically don’t deal with all the real numbers or even
with all the rational numbers, but with some specified level of
precision. They really work with a subset of the rational numbers.

2 The sequence

3, 3.1, 3.14, 3.141, 3.1415, 3.14159, 3.141592, ...

is a list of numbers that are steadily approaching π. The terms in
this sequence are increasing and they are approaching π. We say
that this sequence converges to π and we will investigate the
concept of convergent sequences in Chapter 3.

3 We haven’t looked yet at the question of how the numbers in the
above sequence can be calculated, i.e. how we can get our hands on
better and better approximations to the value of the irrational
number π. That’s another thing that we will look at in Chapter 3.
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Upper and Lower Bounds

The goal of this last section of Chapter 2 is to pinpoint one essential
property of subsets of R that is not shared by subsets of Z or of Q. We
need a few definitions and some terminology in order to describe this.

Definition 46

Let S be a subset of R. An element b of R is an upper bound for S if
x ≤ b for all x ∈ S . An element a of R is a lower bound for S if a ≤ x
for all x ∈ S .
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Upper and Lower Bounds

The goal of this last section of Chapter 2 is to pinpoint one essential
property of subsets of R that is not shared by subsets of Z or of Q. We
need a few definitions and some terminology in order to describe this.

So an upper bound for S is a number that is to the right of all elements
of S on the real line, and a lower bound for S is a number that is to the
left of all points of S on the real line. Note that if b is an upper bound
for S , then so is every number b� with b < b�. If a is a lower bound for S
then so is every number a� with a� < a. So if S has an upper bound at all
it has infinitely many upper bounds, and if S has a lower bound at all it
has infinitely many lower bounds.
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Upper and Lower Bounds

Definition 46

Let S be a subset of R. An element b of R is an upper bound for S if
x ≤ b for all x ∈ S . An element a of R is a lower bound for S if a ≤ x
for all x ∈ S .

Recall that

S is bounded above if it has an upper bound,

S is bounded below if it has a lower bound,

S is bounded if it is bounded both above and below.

In this section we are mostly interested in sets that are bounded on at
least one side.
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Maximum and minimum elements

Definition 47

Let S be a subset of R. If there is a number m that is both an element
of S and an upper bound for S , then m is called the maximum element
of S and denoted max(S).
If there is a number l that is both an element of S and a lower bound for
S , then l is called the minimum element of S and denoted by min(S).

Notes
A set can have at most one maximum (or minimum) element.
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Maximum and minimum elements

Definition 47

Let S be a subset of R. If there is a number m that is both an element
of S and an upper bound for S , then m is called the maximum element
of S and denoted max(S).
If there is a number l that is both an element of S and a lower bound for
S , then l is called the minimum element of S and denoted by min(S).

Notes
Pictorially, on the number line, the maximum element of S is the
rightmost point that belongs to S , if such a point exists. The minimum
element of S is the leftmost point on the number line that belongs to S ,
if such a point exists.
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Not every set has a maximum element

There are basically two reasons why a subset S of R might fail to have a
maximum element. First, S might not be bounded above - then it
certainly won’t have a maximum element.

Secondly, S might be bounded above, but might not contain an element
that is an upper bound for itself. Take for example an open interval like
(0, 1). This set is certainly bounded above. However, take any element x
of (0, 1). Then x is a real number that is strictly greater than 0 and
strictly less than 1. Between s and 1 there are more real numbers all of
which belong to (0, 1) and are greater than x . So x cannot be an upper
bound for the interval (0, 1).
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Maximum and Minimum Elements

An open interval like (0, 1), although it is bounded, has no maximum
element and no minimum element.
An example of a subset of R that does have a maximum and a minimum
element is a closed interval like [2, 3]. The minimum element of [2, 3] is 2
and the maximum element is 3.

Remark : Every finite subset of R has a maximum element and a
minimum element.
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Supremum and Infimum

For bounded subsets of R, there are notions called the supremum and
infimum that are closely related to maximum and minimum. Every
subset of R that is bounded above has a supremum and every subset of
R that is bounded below has an infimum.

Definition 48 (The Axiom of Completeness for R)

Let S be a subset of R that is bounded above. Then the set of all upper
bounds for S has a minimum element. This number is called the
supremum of S and denoted sup(S).
Let S be a subset of R that is bounded below. Then the set of all lower
bounds for S has a maximum element. This number is called the
infimum of S and denoted inf(S).
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Supremum and Infimum

For bounded subsets of R, there are notions called the supremum and
infimum that are closely related to maximum and minimum. Every
subset of R that is bounded above has a supremum and every subset of
R that is bounded below has an infimum.

Definition 48 (The Axiom of Completeness for R)

Let S be a subset of R that is bounded above. Then the set of all upper
bounds for S has a minimum element. This number is called the
supremum of S and denoted sup(S).
Let S be a subset of R that is bounded below. Then the set of all lower
bounds for S has a maximum element. This number is called the
infimum of S and denoted inf(S).

Notes

1 The supremum of S is also called the least upper bound (lub) of S .

2 The infimum of S is also called the greatest lower bound (glb) of S .

Dr Rachel Quinlan MA180/MA186/MA190 Calculus The Completeness Axiom 167 / 218



The Axiom of Completeness

The definition above is simultaneously a definition of the terms
supremum and infimum and a statement of the Axiom of Completeness
for the real numbers.

To see why this statement says something special about the real
numbers, temporarily imagine that the only number system available to
us is Q, the set of rational numbers. Look at the set

S := {x ∈ Q : x2 < 2}.
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S := {x ∈ Q : x2 < 2}

So S consists of all those rational numbers whose square is less than 2. It
is bounded above, for example by 2.
The positive elements of S are all those positive rational numbers that
are less than the real number

√
2.

Claim: S does not have a least upper bound in Q.
To see this, suppose that x is a rational number that is a candidate for
being the least upper bound of S in R.

If x2 < 2, then there is a gap in the number line between x and
√
2,

and in this gap are rational numbers that are greater than x but still
less than

√
2. So x is not an upper bound of S .

If x2 > 2, then there is a gap in the number line between
√
2 and x ,

and in this gap are rational numbers that are still upper bounds of S
but are less than x .
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S := {x ∈ Q : x2 < 2}

If we consider the same set S as a subset of R, we can see that
√
2 is the

supremum of S in R (and −
√
2) is the infimum of S in R.

This example demonstrates that the Axiom of Completeness does not
hold for Q, i.e. a bounded subset of Q need not have a supremum in Q
or an infimum in Q.

Dr Rachel Quinlan MA180/MA186/MA190 Calculus The Completeness Axiom 170 / 218



A question from the 2014 exam . . .

Question 49

Let S =
�
2n+4
3n : n ∈ Z, n ≥ 1

�
.

1 List four elements of S.

2 Identify, with explanation, the maximum element of S.

3 Show that S has no minimum element, and determine the infimum
of S.
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Learning Outcomes for Section 2.5

After studying this section you should be able to

State what it means for a subset of R to be bounded (or bounded
above or bounded below).

Define the terms maximum, minimum, supremum and infimum and
explain the connections and differences between them.

State the Axiom of Completeness.

Determine whether a set presented like the one in the problem
above is bounded (above and/or below) or not and identify its
maximum/minimum/infimum/supremum as appropriate, with
explanation.
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