
Section 3.3: Introduction to Infinite Series

Definition 68

A series or infinite series is the sum of all the terms in a sequence.

Example 69 (Examples of infinite series)

1

∞�

n=1

n = 1 + 2 + 3 + ...
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Section 3.3: Introduction to Infinite Series

Definition 68

A series or infinite series is the sum of all the terms in a sequence.

Example 69 (Examples of infinite series)

1

∞�

n=1

n = 1 + 2 + 3 + ...

2 A geometric series

∞�

n=0

1

2n
= 1 +

1

2
+

1

22
+ ...

Every term in this series is obtained from the previous one by
multiplying by the common ratio 1

2 . This is what geometric means.
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Examples of Series (continued)

Example 70

3. The harmonic series

∞�

n=1

1

n
= 1 +

1

2
+

1

3
+ ...
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Examples of Series (continued)

Example 70

3. The harmonic series

∞�

n=1

1

n
= 1 +

1

2
+

1

3
+ ...

4. An alternating series

∞�

n=0

(−1)n = 1 + (−1) + 1 + (−1) + ...
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Notes

1 For now these infinite sums are just formal expressions or
arrangements of symbols. Whether it is meaningful to think of them
as numbers or not is something that can be investigated.
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Notes

1 For now these infinite sums are just formal expressions or
arrangements of symbols. Whether it is meaningful to think of them
as numbers or not is something that can be investigated.

2 A series is not the same thing as a sequence - don’t confuse these
terms! A sequence is a list of numbers. A series is an infinite sum.

Dr Rachel Quinlan MA180/MA186/MA190 Calculus Infinite series 197 / 218



Notes

1 For now these infinite sums are just formal expressions or
arrangements of symbols. Whether it is meaningful to think of them
as numbers or not is something that can be investigated.

2 A series is not the same thing as a sequence - don’t confuse these
terms! A sequence is a list of numbers. A series is an infinite sum.

3 The “sigma” notation for sums: sigma (lower case σ, upper case Σ)
is a letter from the Greek alphabet, the upper case

�
is used to

denote sums. The notation
�j

n=i an means:
i and j are integers and i ≤ j . For each n from i to j the number an
is defined; the expression above means the sum of the numbers an
where n runs through all the values from i to j , i.e.

j�

n=i

an = ai + ai+1 + ai+2 + · · ·+ aj−1 + aj .

For infinite sums we can have −∞ and/or ∞ (instead of fixed
integers i and j) as subscripts and superscripts for the summation.
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Sequences of partial sums

In the examples above we can start from the beginning, adding terms at
the start of the series. Adding term by term we get the following lists.

1

∞�

n=1

n = 1 + 2 + 3 + ...

1, 1+ 2, 1+2+3, 1+2+3+4, 1+2+3+4+5, ... 1, 3, 6, 10, 15, ...

Since the terms being added on at each stage are getting bigger, the
numbers in the list above will keep growing (faster and faster as n
increases) - we can’t associate a numerical value with this infinite
sum.
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Examples (continued)

2. A geometric series
∞�

n=0

1

2n
= 1 +

1

2
+

1

22
+ ...

1, 1 +
1

2
, 1 +

1

2
+

1

22
, 1 +

1

2
+

1

22
+

1

23
... 1,

3

2
,
7

4
,
15

8
,
31

16
,
63

32
...

In this example the terms that are being added on at each step ( 1
2n )

are getting smaller and smaller as n increases, and the numbers in
the list appear to be converging to 2.
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Examples (continued)

2. A geometric series
∞�

n=0

1

2n
= 1 +

1

2
+

1

22
+ ...

1, 1 +
1

2
, 1 +

1

2
+

1

22
, 1 +

1

2
+

1

22
+

1

23
... 1,

3

2
,
7

4
,
15

8
,
31

16
,
63

32
...

In this example the terms that are being added on at each step ( 1
2n )

are getting smaller and smaller as n increases, and the numbers in
the list appear to be converging to 2.

3. The harmonic series
∞�

n=1

1

n
= 1 +

1

2
+

1

3
+ ...

1, 1 +
1

2
, 1 +

1

2
+

1

3
, 1 +

1

2
+

1

3
+

1

4
... 1,

3

2
,
11

6
,
25

12
,
137

60
, ...

It is harder to see what is going on here.
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Notes

4. An alternating series

∞�

n=0

(−1)n = 1 + (−1) + 1 + (−1) + ...

1, 1−1, 1−1+1, 1−1+1−1, 1−1+1−1+1 ... 1, 0, 1, 0, 1, ...

The terms being “added on” at each step are alternating between 1
and −1, and as we proceed with the summation the “running total”
alternates between 0 and 1. There is no numerical value that we can
associate with the infinite sum

�∞
n=0(−1)n.
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Notes

4. An alternating series

∞�

n=0

(−1)n = 1 + (−1) + 1 + (−1) + ...

1, 1−1, 1−1+1, 1−1+1−1, 1−1+1−1+1 ... 1, 0, 1, 0, 1, ...

The terms being “added on” at each step are alternating between 1
and −1, and as we proceed with the summation the “running total”
alternates between 0 and 1. There is no numerical value that we can
associate with the infinite sum

�∞
n=0(−1)n.

Note: The series in 2. above converges to 2, the series in 1. and 4. are
both divergent and it is not obvious yet but the series in 3. is divergent
as well. Our next task is to give precise meanings to these terms for
series. In order to do this we need some terminology. We know what it
means for a sequence to converge, but we don’t yet have a definition of
convergence for series.
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Convergence of a series

Definition 71

For a series
∞�

n=1

an, and for k ≥ 1, let

sk =
k�

n=1

an = a1 + a2 + a3 + · · ·+ ak .

Thus s1 = a1, s2 = a1 + a2, s3 = a1 + a2 + a3 etc.
Then sk is called the kth partial sum of the series, and the sequence
{sk}∞k=1 is called the sequence of partial sums of the series.
If the sequence of partial sums converges to a limit s, the series is said to
converge and s is called its sum. In this situation we can write�∞

n=1 an = s. If the sequence of partial sums diverges, the series is said
to diverge.
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Convergence of a geometric series

Recall Example 2 above:

∞�

n=0

1

2n
= 1 +

1

2
+

1

22
+ ...

In this example, for k ≥ 0,

sk =
k�

n=0

1

2n
= 1 +

1

2
+

1

4
+ ...

1

2k

1

2
sk =

k�

n=0

1

2n+1
=

1

2
+

1

4
+ ...

1

2k
+

1

2k+1

Then

sk −
1

2
sk =

1

2
sk = 1− 1

2k+1
=⇒ sk = 2− 1

2k
.

So the sequence of partial sums has kth term 2− 1
2k
. This sequence

converges to 2 so the series converges to 2.
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General geometric series

Consider the sequence of partial sums for the geometric series

∞�

n=0

arn = a+ ar + ar2 + ...

(This is a geometric series with initial term a and common ratio r .) The
kth partial sum sk is given by

sk =
�k

n=0 ar
n = a + ar + ... + ark

rsk =
�k

n=0 ar
n+1 = ar + ar2 + ... + ark + ark+1

Then (1− r)sk = a− ark+1 =⇒ sk =
a(1− rk+1)

1− r
. If |r | < 1, then

rk+1 → 0 as k → ∞, and the sequence of partial sums (hence the series)

converges to
a

1− r
. If |r | ≥ 1 the series is divergent.
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The harmonic series is divergent

Theorem 72

The harmonic series
∞�

n=1

1

n
is divergent.

Proof: Think of 1
n as the area of a rectangle of height 1

n and width 1,
sitting on the interval [n, n + 1] on the x-axis. So the 1

1 corresponds to a
square of area 1 sitting on the interval [1, 2], the term 1

2 corresponds to a
rectangle of area 1

2 sitting on the interval [2, 3] and so on.
The total area accounted for by these triangles is the sum of the harmonic
series, and this exceeds the area accounted for by the improper integral

� ∞

1

1

x
dx .

From Section 1.5 we know that this area is infinite.
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A necessary condition for convergence

Note: A necessary condition for the series

∞�

n=1

an

to converge is that the sequence (an)
∞
n=1 converges to 0; i.e. that an → 0

as n → ∞. If this does not happen, then the sequence of partial sums
has no possibility of converging.
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A necessary condition for convergence

Note: A necessary condition for the series

∞�

n=1

an

to converge is that the sequence (an)
∞
n=1 converges to 0; i.e. that an → 0

as n → ∞. If this does not happen, then the sequence of partial sums
has no possibility of converging.

The example of the harmonic series shows that the condition an → 0 as
n → ∞ is not sufficient to guarantee that the series

�∞
n=1 will converge.
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Learning outcomes for Section 3.3

After studying this section you should be able to

explain what an infinite series is and what it means for an infinite
series to converge;

Give examples of convergent and divergent series;

show that the harmonic series is divergent;

Use the “sigma” notation for sums.
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Section 3.4: Introduction to power series

Definition 73

A power series in the variable x resembles a polynomial, except that it
may contain infinitely many positive powers of x . It is an expression of
the type

∞�

i=0

aix
i = a0 + a1x + a2x

2 + ... ,

where each ai is a number.

Example 74

∞�

n=0

xn = 1 + x + x2 + x3 + ...

is a power series.

Question: Can we think of a power series as a function of x?
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Power Series as Functions

Define a “function” by

f (x) =
∞�

n=0

xn = 1 + x + x2 + ...

If we try to evaluate this function at x = 2, we get a series of real
numbers.

f (2) =
∞�

n=0

2n = 1 + 2 + 22 + ...

This series is divergent, so our power series does not define a
function that can be evaluated at 2.
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Power Series as Functions

Define a “function” by

f (x) =
∞�

n=0

xn = 1 + x + x2 + ...

If we try to evaluate this function at x = 2, we get a series of real
numbers.

f (2) =
∞�

n=0

2n = 1 + 2 + 22 + ...

This series is divergent, so our power series does not define a
function that can be evaluated at 2.

If we try evaluating at 0 (and allow that the first term x0 of the
power series is interpreted as 1 for all values of x), we get

f (0) = 1 + 0 + 02 + · · · = 1.

So it does make sense to “evaluate” this function at x = 0.
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f (x) =
�∞

n=0 x
n = 1 + x + x2 + ...

If we try evaluating at x = 1
2 , we get

f

�
1

2

�
=

∞�

n=0

�
1

2

�n

= 1 +
1

2
+

�
1

2

�2

+ ...

This is a geometric series with first term a = 1 and common ratio
r = 1

2 . We know that if |r | < 1, such a series converges to the

number
a

1− r
. In this case

a

1− r
=

1

1− 1
2

= 2,

and we have f (12) = 2.

So we can evaluate our function at x = 1
2 .
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f (x) =
�∞

n=0 x
n = 1

1−x , for |x | < 1

A geometric series of this sort converges provided that the absolute value
of its common ratio is less than 1. In general for any value of x whose
absolute value is less than 1 (i.e. any x in the interval (−1, 1)), we find

that f (x) is a convergent geometric series, converging to
1

1− x
.

Conclusion: For values of x in the interval (−1, 1) (i.e. |x | < 1), the
function f (x) = 1

1−x coincides with the power series
�∞

n=0 x
n.

1

1− x
=

∞�

n=0

xn, for |x | < 1.

The interval (−1, 1) is called the interval of convergence of the power
series, and 1 is the radius of convergence. We say that the power series
representation of the function f (x) = 1

1−x is
�∞

n=0 x
n, for values of x in

the interval (−1, 1).
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Which functions have power series representations?

Remark: The power series representation is not particularly useful if you
want to calculate 1

1−x for some particular value of x , because this is
easily done directly. However, if we could obtain a power series
representation for a function like sin x and use it to evaluate (or
approximate) sin(1) or sin(9) or sin(20), that might be of real practical
use. These numbers are not easy to obtain directly because the definition
of sin x doesn’t tell us how to calculate sin x for a particular x - you can
use a calculator of course but how does the calculator do it?

Questions: What functions can be represented by power series, and on
what sorts of interval or subsets of R? If a function could be represented
by a power series, how would we calculate the coefficients in this series?
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Maclaurin (or Taylor) series

Suppose that f (x) is an infinitely differentiable function (this means that
all the deriviatives of f are themselves differentiable), and suppose that f
is represented by the power series

f (x) =
∞�

n=0

cnx
n.

We can work out appropriate values for the coefficients cn as follows.

Put x = 0. Then f (0) = c0 +
�∞

n=1 cn(0)
n =⇒ f (0) = c0.

The constant term in the power series is the value of f at 0.
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Maclaurin (or Taylor) series

Suppose that f (x) is an infinitely differentiable function (this means that
all the deriviatives of f are themselves differentiable), and suppose that f
is represented by the power series

f (x) =
∞�

n=0

cnx
n.

We can work out appropriate values for the coefficients cn as follows.

Put x = 0. Then f (0) = c0 +
�∞

n=1 cn(0)
n =⇒ f (0) = c0.

The constant term in the power series is the value of f at 0.
To calculate c1, look at the value of the first derivative of f at 0,
and differentiate the power series term by term. We expect

f �(x) = c1 + 2c2x + 3c3x
2 + · · · =

∞�

n=1

ncnx
n−1.

Then we should have f �(0) = c1+2c2× 0+3c3× 0+ · · · = c1. Thus

c1 = f �(0).
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f (x) =
�∞

n=0 cnx
n

For c2, look at the second derivative of f . We expect

f ��(x) = 2(1)c2 + 3(2)c3x + 4(3)c4x
2 + 5(4)c5x

3 + ...

Putting x = 0 gives f ��(0) = 2(1)c2 or

c2 =
f ��(0)
2(1)

.
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f (x) =
�∞

n=0 cnx
n

For c2, look at the second derivative of f . We expect

f ��(x) = 2(1)c2 + 3(2)c3x + 4(3)c4x
2 + 5(4)c5x

3 + ...

Putting x = 0 gives f ��(0) = 2(1)c2 or

c2 =
f ��(0)
2(1)

.

For c3, look at the third derivative f (3)(x). We have

f (3)(x) = 3(2)(1)c3 + 4(3)(2)c4x + 5(4)(3)c5x
2 + ...

Setting x = 0 gives f (3)(0) = 3(2)(1)c3 or

c3 =
f (3)(0)

3(2)(1)
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Coefficients of the Maclaurin Series

Continuing this process, we obtain the following general formula for cn:

cn =
1

n!
f (n)(0).

Definition 75

For a positive integer n, the number n factorial, denoted n! is defined by

n! = n × (n − 1)× (n − 2)× ... 3× 2× 1.

The number 0! (zero factorial) is defined to be 1.
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Power series representation of sin x

Write f (x) = sin x , and write
�∞

n=0 cnx
n for the Maclaurin series of

sin x . Then

f (0) = sin 0 = 0 =⇒ c0 = 0
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Power series representation of sin x

Write f (x) = sin x , and write
�∞

n=0 cnx
n for the Maclaurin series of

sin x . Then

f (0) = sin 0 = 0 =⇒ c0 = 0

f �(0) = cos 0 = 1 =⇒ c1 = 1
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Power series representation of sin x

Write f (x) = sin x , and write
�∞

n=0 cnx
n for the Maclaurin series of

sin x . Then

f (0) = sin 0 = 0 =⇒ c0 = 0

f �(0) = cos 0 = 1 =⇒ c1 = 1

f ��(0) = − sin 0 = 0 =⇒ c2 =
0
2! = 0
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Power series representation of sin x

Write f (x) = sin x , and write
�∞

n=0 cnx
n for the Maclaurin series of

sin x . Then

f (0) = sin 0 = 0 =⇒ c0 = 0

f �(0) = cos 0 = 1 =⇒ c1 = 1

f ��(0) = − sin 0 = 0 =⇒ c2 =
0
2! = 0

f (3)(0) = − cos 0 = −1 =⇒ c3 =
−1
3! = −1

6
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Power series representation of sin x

Write f (x) = sin x , and write
�∞

n=0 cnx
n for the Maclaurin series of

sin x . Then

f (0) = sin 0 = 0 =⇒ c0 = 0

f �(0) = cos 0 = 1 =⇒ c1 = 1

f ��(0) = − sin 0 = 0 =⇒ c2 =
0
2! = 0

f (3)(0) = − cos 0 = −1 =⇒ c3 =
−1
3! = −1

6

f (4)(0) = sin 0 = 0 =⇒ c4 =
0
4! = 0
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Power series representation of sin x

This pattern continues :

If k is even then f (k)(0) = ± sin 0 = 0, so ck = 0.

Thus the Maclaurin series for sin x is given by

∞�

k=0

(−1)k

(2k + 1)!
x2k+1 = x − 1

3!
x3 +

1

5!
x5 − 1

7!
x7 + ...

Note that this series only involves odd powers of x - this is not surprising
because sin is an odd function; it satisfies sin(−x) = − sin x .
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Power series representation of sin x

This pattern continues :

If k is even then f (k)(0) = ± sin 0 = 0, so ck = 0.

If k is odd and k ≡ 1 mod 4 then f (k)(0) = cos 0 = 1 and ck = 1
k! .

Thus the Maclaurin series for sin x is given by

∞�

k=0

(−1)k

(2k + 1)!
x2k+1 = x − 1

3!
x3 +

1

5!
x5 − 1

7!
x7 + ...

Note that this series only involves odd powers of x - this is not surprising
because sin is an odd function; it satisfies sin(−x) = − sin x .
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Power series representation of sin x

This pattern continues :

If k is even then f (k)(0) = ± sin 0 = 0, so ck = 0.

If k is odd and k ≡ 1 mod 4 then f (k)(0) = cos 0 = 1 and ck = 1
k! .

If k is odd and k ≡ 3 mod 4 then f (k)(0) = − cos 0 = −1 and
ck = − 1

k! .

Thus the Maclaurin series for sin x is given by

∞�

k=0

(−1)k

(2k + 1)!
x2k+1 = x − 1

3!
x3 +

1

5!
x5 − 1

7!
x7 + ...

Note that this series only involves odd powers of x - this is not surprising
because sin is an odd function; it satisfies sin(−x) = − sin x .
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Power series representations of sin x and cos x

Theorem 76

For every real number x, the above series converges to sin x.

Thus computing partial sums of this series gives us an effective way of
approximating sin x for any real number x .

Exercise 77

Show that the Maclaurin series for cos x is given by

∞�

k=0

(−1)k

(2k!)
x2k .

(Note that this can be obtained by differentiating term-by-term the series

for sin x , as we would expect since
d

dx
(sin x) = cos x . )

Dr Rachel Quinlan MA180/MA186/MA190 Calculus Power series 217 / 218



Learning outcomes for Section 3.4

After studying this section you should be able to

State the meaning of the term power series,

Explain the concept of the radius of convergence of a power series,

Calculate the coefficients in (an initial segment of) the Maclaurin
series representation of a given function.
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