MA203/MA283: LINEAR ALGEBRA SEMESTER 2 2024-25 PRACTICE PROBLEM SHEET 3

1. Determine whether each of the following subsets of \mathbb{R}^3 is linearly independent.

(a)
$$\left\{ \begin{pmatrix} 1\\ -2\\ 3 \end{pmatrix}, \begin{pmatrix} 0\\ 3\\ -2 \end{pmatrix}, \begin{pmatrix} 1\\ 4\\ -1 \end{pmatrix} \right\}$$

(b)
$$\left\{ \begin{pmatrix} 1\\ -2\\ 3 \end{pmatrix}, \begin{pmatrix} 2\\ 3\\ -2 \end{pmatrix}, \begin{pmatrix} 1\\ 4\\ -1 \end{pmatrix} \right\}$$

- 2. Let S be a linearly independent subset of a vector space V, and suppose that v is an element of V with $v \notin \langle S \rangle$. Show that $S \cup \{v\}$ is a linearly independent subset of V.
- 3. Extend the set

$$\left\{ \begin{bmatrix} 1\\-2\\3 \end{bmatrix}, \begin{bmatrix} 0\\3\\-2 \end{bmatrix} \right\}$$

to a basis of \mathbb{R}^3 .

4. Show that $B = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^3 .

- 5. What is the dimension of the space of all symmetric matrices in $M_3(\mathbb{R})$? (Recall that A is symmetric if $A^T = A$).
- 6. Let $v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ in \mathbb{R}^3 . What is the dimension of the space v^{\perp} defined by

$$\boldsymbol{\nu}^{\perp} = \{\boldsymbol{u} \in \mathbb{R}^3 : \boldsymbol{u}^{\mathsf{T}} \boldsymbol{\nu} = 0\}?$$

Find a basis of u^{\perp} .

7. Find the change of basis matrix from the standard basis to the basis B of Question 4 above, and use it to find the B-coordinates of $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ (where the elements of B are ordered as in Question 4).

8. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by $T(\nu) = A\nu$, where A is the matrix $\begin{bmatrix} 1 & 2 & 1 \\ -2 & -2 & 3 \\ -1 & 0 & -2 \end{bmatrix}$.

What is the matrix of T with respect to the basis $\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$?

- 9. (a) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by $T(v) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} v$. Show that there is no basis of \mathbb{R}^2 with respect to which the matrix of T is diagonal.
 - (b) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by $T(v) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} v$. Show that there is no basis of \mathbb{R}^2 with respect to which the matrix of T is diagonal.
- 10. Find a matrix P for which $P^{-1}AP = diag(1, -2, -10)$, where

$$\mathsf{A} = \begin{bmatrix} -1 & 1 & 2\\ 2 & 0 & 4\\ -4 & 2 & -10 \end{bmatrix}$$

(Note that you do not need to calculate the characteristic polynomial of A to answer this!)

- 11. Find the characteristic polynomial of the matrix $A = \begin{bmatrix} 2 & -1 & 0 \\ 4 & 5 & -2 \\ 0 & -1 & 2 \end{bmatrix}$, and hence find the eigenvalues of A. Find an eigenvector corresponding to each eigenvalue, and determine whether A is
- 12. Give an example of a 2×2 matrix whose entries are all non-zero integers and whose eigenvalues are 2 and 4.

diagonalizable.