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Inner Products

In R2, the scalar (or dot) product of the vectors x =
(x1
x2

)
and y =

(y1
y2

)
is

given by
x · y = x1y1 + x2y2 = xT y = yT x = y · x .

We can interpret the length ||x || of the vector x as the length of the
directed line segment from the origin to (x1, x2), which by the Theorem

of Pythagoras is
√

x2
1 + x2

2 or
√

x · x .

Once we have a concept of length of a vector, we can define the distance
d(x , y) between two vectors x and y as the length of their difference:
d(x , y) = ||x − y ||.
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Inner Products

In R2, the scalar (or dot) product of the vectors x =
(x1
x2

)
and y =

(y1
y2

)
is

given by
x · y = x1y1 + x2y2 = xT y = yT x = y · x .

Similarly, from the Cosine Rule we can observe that
x · y = ||x || ||y || cos θ, where θ is the angle between the directed line
segments representing x and y . In particular, x is orthogonal to y (or
x ⊥ y) if and only if x · y = 0.

So the scalar product encodes geometric information in R2, and it also
provides a mechanism for defining concepts of length, distance and
orthogonality on real vector spaces that do not necessarily have an
obvious geometric structure.
The scalar product is an example of an inner product.
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Real Inner Products

An inner product on a vector space V is a function from V × V to R
that assigns an element of R to every ordered pair of elements of V , and
has the following properties.

1 Symmetry: 〈x , y〉 = 〈y , x〉 for all x , y ∈ V

2 Linearity in both slots (bilinearity): For all x , y , z ∈ V and all
a, b ∈ R, we have 〈ax + by , z〉 = a〈x , z〉+ b〈y , z〉 and
〈x , ay + bz〉 = a〈x , y〉+ b〈x , z〉.

3 Non-negativity: 〈x , x〉 ≥ 0 for all x ∈ V , and 〈x , x〉 = 0 only if
x = 0V .

The ordinary scalar product on Rn is the best known example of an inner
product.
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Examples of inner products

1 The ordinary scalar product on Rn.

2 Let C be the vector space of all continuous real-valued functions on
the interval [0, 1]. The analogue of the ordinary scalar product on C
is the inner product given by

〈f , g〉 =

∫ 1

0
f (x)g(x) dx , for f , g ∈ C .

3 On the space Mm×n(R), the Frobenius inner product or trace inner
product is defined by 〈A, B〉 = trace(ATB). Note that traceATB is
the sum over all positions (i , j) of the products AijBij . So this is
closely related to the ordinary scalar product, if the matrices A and
B were regarded as vectors with mn entries over R.

It is possible for a single vector space to have many different inner
products defined on it, and if there is any risk of ambiguity we need to
specify which one we are considering.
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Length, Distance and Scaling in an Inner Product Space

Definition We define the length or norm of any vector v by

||v || =
√
〈v , v〉,

and we define the distance between the vectors u and v by

d(u, v) = ||u − v ||.

Scaling Every vector v and scalar c satisfy ||cv || = |c | ||v || , since

||cv || =
√
〈cv , cv〉 =

√
c2〈v , v〉 = |c | ||v ||.

So we can adjust the norm of any element of V , while preserving its
direction, by multiplying it by a positive scalar.

Definition If v is a non-zero vector in an inner product space V , then

v̂ :=
1

||v ||
v

is a unit vector in the direction of v , called the normalization of v .
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Orthogonality in an inner product space

Let V be a vector space with an inner product 〈·, ·〉 (such as the ordinary
scalar product).
Definition We say that the vectors u and v are orthogonal (with respect
to 〈·, ·〉) if 〈u, v〉 = 0.

All these definitions are consistent with “typical” geometrically motivated
concepts of distance and orthogonality.
Examples

1 (2, 5) and (5,−2) are orthogonal with respect to the ordinary scalar
product in R2.

2 sin πx and cos πx are orthogonal with respect to the scalar product
on the space of continuous functions on [0, 1] defined in Lecture 18;
this is saying that∫ 1

0
sin(πx) cos(πx) dx = 0

(
=

1

2π
sin2(πx)

∣∣∣∣1
0

)
.
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Orthogonal Projection

Lemma Let u and v be non-zero vectors in an inner product space V .
Then it is possible to write (in a unique way) v = au + v ′, where a is
scalar and v ′ is orthogonal to u.

If v is orthogonal to u, take a = 0 and v ′ = v .

If v is a scalar multiple of u, take au = v and v ′ = 0.

Otherwise, to solve for a and v ′ in the equation v = au + v ′ (with
u ⊥ v ′), take the inner product with u on both sides. Then

〈u, v〉 = a〈u, u〉+ 0 =⇒ a =
〈u, v〉
||u||2

, v ′ = v − 〈u, v〉
||u||2

u.

We can verify directly that the two components in this expression
are orthogonal to each other.

Example Write u =

[
2
1

]
, v =

[
6
−2

]
. Then u =

 3
2

− 1
2

+

 1
2

3
2

 .
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Orthogonal projection of one vector on another

Definition

For non-zero vectors u and v in an inner product space V , the vector
〈u, v〉
||u||2

u is called the projection of v on the 1-dimensional space spanned

by u. It is denoted by proju(v) and it has the property that v − proju(v)
is orthogonal to u.

Lemma

proju(v) is the unique element of 〈u〉 whose distance from v is minimal.

Proof Let au be a scalar multiple of u. Then

d(au, v)2 = 〈au − v , au − v〉 = a2〈u, u〉 − 2a〈u, v〉+ 〈v , v〉

Regarded as a quadratic function of a, this has a minimum when its

derivative is 0, i.e. when 2a〈u, u〉 − 2〈u, v〉 = 0, when a =
〈u, v〉
||u||2

.

Rachel Quinlan MA203/283 Lecture 19 9 / 14



Orthogonal Bases (the Gram-Schmidt process)

Every finite-dimensional inner product space has an orthogonal basis1

We can start with any basis {b1, ... , bn}, and adjust the elements one by
one (by subtracting off orthogonal projections of later vectors on earlier
ones). The process ends with an orthogonal basis {v1, ... , vn}.

1 Set v1 = b1, and v2 = b2 − projv1(b2) = b2 −
〈v1, b2〉
〈v1, v1〉

v1.

Then the pairs b1, b2 and v1, v2 span the same space, and v1 ⊥ v2.

2 Write v3 = b3 − projv1(b3)− projv2(b3).
Then {v1, v2, v3} and {b1, b2, b3} span the same space, and v3 ⊥ v1
and v3 ⊥ v2. To see this look at 〈v3, v1〉 and 〈v3, v2〉, noting that

v3 = b3 −
〈b3, v1〉
〈v1, v1〉

v1 −
〈b3, v2〉
〈v2, v2〉

v2.

3 Continue: at the kth step, form vk by subtracting from bk its
projections on v1, ... , vn.

1This means a basis whose elements are all orthogonal to each other.
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Orthogonal projection on a subspace

The result of this process is a basis {v1, ... , vn} whose elements satisfy

〈vi , vj〉 = 0 for i 6= j

We can adjust this basis to a orthonormal basis (consisting of orthogonal
unit vectors) by replacing each vi with its normalization v̂i .
From the Gram-Schmidt process, we have

Theorem

If V is a finite-dimensional inner product space, then V has an
orthogonal (or orthonormal) basis.

Now let W be a subspace of V , and let v ∈ V . The orthogonal
projection of v on W , denoted projW (v), is defined to be the unique
element u of W for which

v = u + v ′,

and v ′ ⊥ w for all w ∈W .
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Calculating the projection on a subspace

Example In R3, find the unique point of the plane W : x + 2y − z = 0
that is nearest to the point v : (1, 2, 2).

Solution First find an orthogonal basis for W : for example {b1, b2},
where

b1 =

 1
0
1

 , b2 =

 1
−1
−1


Then

projW (v) = projb1(v) + projb2(v)

=
〈b1, v〉
〈b1, b1〉

b1 +
〈b2, v〉
〈b2, b2〉

b2

=
3

2
b1 −

3

3
b2

=

(
3

2
, 0,

3

2

)
− (1,−1,−1) =

(
1

2
, 1,

5

2

)
.
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projW (v) is the nearest point of W to v

Let u = projW (v) and let w be any element of W .
Note that v − u is orthogonal to both w and u, hence to w − u. Then

d(v , w)2 = 〈v − w , v − w〉
= 〈(v − u) + (u − w), (v − u) + (u − w)〉
= 〈v − u, v − u〉+((((((((

2〈v − u, u − w〉+ 〈u − w , u − w〉
= 〈v − u, v − u〉+ 〈u − w , u − w〉
≥ d(v , u)2,

with equality only if w = u = projW (v).
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