Lecture 18: Algebraic and geometric multuplicity

March 26, 2025

Lecture 18: Algebraic and Geometric Multiplicity

- **1** Recall: Definitions from Lecture 17
- 2 Non-diagonalizability
- 3 Example a shear in \mathbb{R}^2
- 4 Distinct eigenvalues
- 5 Determinant properties
- 6 Multplicity

Definition An eigenvector of a square matrix A is a non-zero column vector v for which $Av = \lambda v$ for some scalar λ , called the eigenvalue of A to which v corresponds.

The eigenvalues of A are the roots of its characteristic polynomial $det(xI_n - A)$.

The eigenspace corresponding to a particular eigenvalue λ is the set of all vectors v satisfying $Av = \lambda v$. It is a subpsace of the relevant \mathbb{R}^n , of dimension at least 1.

The matrix $A \in M_n(\mathbb{R})$ is diagonalizable if and only if \mathbb{R}^n has a basis consisting of eigenvectors of A. In this case $P^{-1}AP$ is diagonal, where P is a matrix whose n columns are linearly independent eigenvectors of A. The diagonal entries of $P^{-1}AP$ are the corresponding eigenvalues.

For $A \in M_n(\mathbb{R})$, it does not always happen that \mathbb{R}^n has a basis consisting of eigenvectors of A.

Examples

polynomial is $(x - 1)^2$ but its 1-eigenspace consists only of the X-axis. It does not have two linearly independent eigenvectors.

A shear in \mathbb{R}^2

Example (from Lecture 16) $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. The linear transformation T described by B sends $(x, y) \in \mathbb{R}^2$ to (x + y, y). This is a horizontal shear: it shifts every point horizontally by its *y*-coordinate.

For every point $v \in \mathbb{R}^2$, T(v) is on the same horizontal line as v. It follows that T(v) is a scalar multiple of v only if v lies on the X-axis. In this case T(v) = v.

The characteristic polynomial of B (and T) is $(\lambda - 1)^2$. The only eigenvalue is 1, and it has algebraic multiplicity 2, meaning it appears twice as a root of the characteristic polynomial.

But its geometric multiplicity is only 1, meaning its corresponding eigenspace is 1-dimensional, just the line y = 0.

Repeated or distinct eigenvalues

The "shear" example shows that \mathbb{R}^2 does not have a basis consisting of eignevectors of $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, so B is not similar to a diagonal matrix.

Also B has 1 as a repeated eigenvalue (double root of its characteristic polynomial).

We will show that a matrix is diagonalizable 1 if its characteristic polynomial has distinct roots.

Example $A = \begin{bmatrix} -4 & 7 \\ -2 & 5 \end{bmatrix}$. $det(\lambda I - A) = \lambda^2 - \lambda - 6 = (\lambda + 2)(\lambda - 3)$: distinct roots. Distinct eigenvalues -2, 3. Respective corresponding eigenvectors: $\begin{bmatrix} 7 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Note these are linearly independent, so form a basis of \mathbb{R}^2 . Conclusion $P^{-1}AP = \begin{bmatrix} -2 & 0 \\ 0 & 3 \end{bmatrix}$, where $P = \begin{bmatrix} 7 & 1 \\ 2 & 1 \end{bmatrix}$.

¹Small print: possibly considered as a matrix in $M_n(\mathbb{C})$ if its eigenvalues are not real Rachel Quinlan MA203/283 Lecture 18 6 / 11

Eigenvectors for distinct eigenvalues are independent

Theorem Let $A \in M_n(\mathbb{R})$ and let v_1, \ldots, v_k be eigenvectors of A in \mathbb{R}^n , corresponding to *distinct* eigenvalues $\lambda_1, \ldots, \lambda_k$ of A. Then $\{v_1, \ldots, v_k\}$ is a linearly independent subset of \mathbb{R}^n .

Proof (for k = 3.) First note that no two of v_1 , v_2 , v_3 are scalar multiples of each other, since they correspond to different eigenvalues.

Now suppose $a_1v_1 + a_2v_2 + a_3v_3 = 0$, for scalars a_1, a_2, a_3 in \mathbb{R} . We need to show $a_1 = a_2 = a_3 = 0$.

Multiplying $a_1v_1 + a_2v_2 + a_3v_3$ on the left by A, we have

$$a_1Av_1 + a_1Av_2 + a_3Av_3 = 0 \Longrightarrow a_1\lambda_1v_1 + a_2\lambda_2v_2 + a_3\lambda_3v_3 = 0.$$

Multiply $a_1v_1 + a_2v_2 + a_3v_3$ by λ_1 : $a_1\lambda_1v_1 + a_2\lambda_1v_2 + a_3\lambda_1v_3 = 0$.

Subtract to get
$$\begin{vmatrix} a_2(\lambda_1 - \lambda_2) v_2 + a_3(\lambda_1 - \lambda_3) v_3 = 0. \\ \neq 0 \end{vmatrix}$$

Since v_2 and v_3 are linearly independent and $\lambda_1 - \lambda_2 \neq 0$, and $\lambda_1 = \lambda_3 \neq 0$, it follows that $a_2 = a_3 = 0$, and hence that $a_1 = 0$ also.

Rachel Quinlan

MA203/283 Lecture 18

The following consequence of the theorem shows that a matrix cannot have too many distinct eigenvalues. We already knew this, since the eigenvalues are roots of a polynomial of degree n, but here we deduce it without having to appeal to any theory about polynomial equations.

Corollary Let $A \in M_n(\mathbb{R})$. Then A has at most n distinct eigenvalues in \mathbb{R} .

Proof If A has k distinct eigenvalues, with corresponding eigenvectors v_1, \ldots, v_k in \mathbb{R}^n , then k cannot exceed the dimension of \mathbb{R}^n , since $\{v_1, \ldots, v_k\}$ is a linearly independent set in \mathbb{R}^n . Hence $k \leq n$.

Another Corollary If $A \in M_n(\mathbb{R})$ has *n* distinct eigenvalues, then *A* is diagonalizable.

Proof A set consisting of one eigenvector for each of the n eigenvalues is linearly independent and hence is a basis.

- **1** The characteristic polynomial of the square matrix $A \in M_n(\mathbb{R})$ is the determinant of $\lambda I_n A$.
- 2 If t is a root of this polynomial, the t-eigenspace of A is the nullspace of the matrix $tI_n A$.
- 3 The determinant of a diagonal or upper triangular matrix is the product of the entries on its main diagonal.
- 4 A square matrix is block diagonal if its non-zero entries are all contained in square blocks along its diagonal. The determinant of a block diagonal matrix is the product of the determinants of its diagonal blocks.
- **5** Similar matrices have the same characteristic polynomial and the same eigenvalues and eigenspace dimensions, since they represent the same linear transformation.

Similar Matrices have the same Characteristic Polynomial

Suppose that A and B are similar square matrices, so that

$$B = P^{-1}AP$$

for some invertible matrix P. Then

$$det(xI - B) = det(xI - P^{-1}AP)$$

=
$$det(P^{-1}(xI)P - P^{-1}AP)$$

=
$$det(P^{-1}(xI - A)P)$$

=
$$det P^{-1}det(xI - A) det P$$

=
$$det(xI - A).$$

If two matrices have the same characteristic polynomial, they are not necessarily similar. For example $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ have the same characteristic polynomial but are not similar.

Multiplicity of Eigenvalues

Let λ be an eigenvalue of a matrix $A \in M_n(\mathbb{R})$. The algebraic multiplicity of λ is the number of times that λ occurs as a root of the characteristic polynomial. The geometric multiplicity is the dimension of the *t*-eigenspace of A.

Example The matrix
$$A = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$
 has two distinct eigenvalues, 3
and 4. Both have algebraic multiplicity 2; the characteristic polynomial is
 $(\lambda - 3)^3(\lambda - 4)^2$.
The 3-eigenspace has dimension 2, its elements are $\begin{bmatrix} a \\ b \end{bmatrix}$ for $a, b \in \mathbb{R}$

The 3-eigenspace has dimension 2, its elements are $\begin{bmatrix} b \\ 0 \\ 0 \end{bmatrix}$, for $a, b \in \mathbb{K}$. The 4-eigenspace only has dimension 1, its elements are $\begin{bmatrix} 0 \\ 0 \\ c \\ 0 \end{bmatrix}$, for $c \in \mathbb{R}$.

This A is not diagonalizable since it does not have four independent eigenvectors.

Rachel Quinlan

MA203/283 Lecture 18

Theorem The geometric multiplicity of an eigenvalue is at most equal to its algebraic multiplicity.

Proof: Suppose that t has geometric multiplicity k as an eigenvalue of the square matrix $A \in M_n(\mathbb{R})$, and let $\{v_1, \ldots, v_k\}$ be a basis for the t-eigenspace of A. Extend this to a basis \mathcal{B} of \mathbb{R}^n , and let P be the matrix whose columns are the elements of \mathcal{B} . Then the first k columns of $P^{-1}AP$ have t in the diagonal position and zeros elsewhere. It follows that $\lambda - t$ occurs at least k times as a factor of det $(\lambda I_n - P^{-1}AP)$, so the algebraic multiplicity of t is at least k.

Corollary A matrix is diagonalizable if and only if the geometric multiplicity of each of its eigenvalues is equal to the algebraic multiplicity.