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Eigenvectors and Diagonalizability

Definition An eigenvector of a square matrix A is a non-zero column
vector v for which Av = λv for some scalar λ, called the eigenvalue of A
to which v corresponds.

The eigenvalues of A are the roots of its characteristic polynomial
det(xIn − A).

The eigenspace corresponding to a particular eigenvalue λ is the set of all
vectors v satsfying Av = λv . It is a subpsace of the relevant Rn, of
dimension at least 1.

The matrix A ∈ Mn(R) is diagonalizable if and only if Rn has a basis
consisting of eigenvectors of A. In this case P−1AP is diagonal, where P
is a matrix whose n columns are linearly independent eigenvectors of A.
The diagonal entries of P−1AP are the corresponding eigenvalues.
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Non-diagonalizabilty (two examples)

For A ∈ Mn(R), it does not always happen that Rn has a basis consisting
of eigenvectors of A.

Examples

1 The matrix A =

[
0 −1
1 0

]
is diagonalizable in M2(C) but not in

M2(R).
This matrix represents an anti-clockwise rotation through 90◦ about
the origin. It does not fix any line in R2. Its characteristic
polynomial is x2 + 1.

2 The matrix B =

[
1 1
0 1

]
is not diagonalizable even over C.

This matrix represents a horizontal shear. Its characteristic
polynomial is (x − 1)2 but its 1-eigenspace consists only of the
X -axis. It does not have two linearly independent eigenvectors.

Rachel Quinlan MA203/283 Lecture 18 4 / 11



A shear in R2

Example (from Lecture 16) B =

[
1 1
0 1

]
. The

linear transformation T described by B sends
(x , y) ∈ R2 to (x + y , y). This is a horizontal
shear: it shifts every point horizontally by its
y -coordinate.
For every point v ∈ R2, T (v) is on the same
horizontal line as v . It follows that T (v) is a
scalar multiple of v only if v lies on the X -axis.
In this case T (v) = v .

The characteristic polynomial of B (and T ) is (λ− 1)2.
The only eigenvalue is 1, and it has algebraic multiplicity 2, meaning it
appears twice as a root of the characteristic polynomial.

But its geometric multiplicity is only 1, meaning its corresponding
eigenspace is 1-dimensional, just the line y = 0.
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Repeated or distinct eigenvalues

The “shear” example shows that R2 does not have a basis consisting of

eignevectors of B =

[
1 1
0 1

]
, so B is not similar to a diagonal matrix.

Also B has 1 as a repeated eigenvalue (double root of its characteristic
polynomial).
We will show that a matrix is diagonalizable 1 if its characteristic
polynomial has distinct roots.

Example A =

[
−4 7
−2 5

]
. det(λI − A) = λ2 − λ− 6 = (λ + 2)(λ− 3):

distinct roots. Distinct eigenvalues −2, 3.

Respective corresponding eigenvectors:

[
7
2

]
,

[
1
1

]
.

Note these are linearly independent, so form a basis of R2.

Conclusion P−1AP =

[
−2 0

0 3

]
, where P =

[
7 1
2 1

]
.

1Small print: possibly considered as a matrix in Mn(C) if its eigenvalues are not real
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Eigenvectors for distinct eigenvalues are independent

Theorem Let A ∈ Mn(R) and let v1, ... , vk be eigenvectors of A in Rn,
corresponding to distinct eigenvalues λ1, ... ,λk of A. Then {v1, ... , vk} is
a linearly independent subset of Rn.

Proof (for k = 3.) First note that no two of v1, v2, v3 are scalar multiples
of each other, since they correspond to different eigenvalues.

Now suppose a1v1 + a2v2 + a3v3 = 0, for scalars a1, a2, a3 in R. We need
to show a1 = a2 = a3 = 0.
Multiplying a1v1 + a2v2 + a3v3 on the left by A, we have

a1Av1 + a1Av2 + a3Av3 = 0 =⇒ a1λ1v1 + a2λ2v2 + a3λ3v3 = 0.

Multiply a1v1 + a2v2 + a3v3 by λ1: a1λ1v1 + a2λ1v2 + a3λ1v3 = 0.

Subtract to get a2(λ1 − λ2︸ ︷︷ ︸
6=0

)v2 + a3(λ1 − λ3︸ ︷︷ ︸
6=0

)v3 = 0.

Since v2 and v3 are linearly independent and λ1 − λ2 6= 0, and
λ1 = λ3 6= 0, it follows that a2 = a3 = 0, and hence that a1 = 0 also.

Rachel Quinlan MA203/283 Lecture 18 7 / 11



At most n distinct eigenvalues

The following consequence of the theorem shows that a matrix cannot
have too many distinct eigenvalues. We already knew this, since the
eigenvalues are roots of a polynomial of degree n, but here we deduce it
without having to appeal to any theory about polynomial equations.

Corollary Let A ∈ Mn(R). Then A has at most n distinct eigenvalues in
R.

Proof If A has k distinct eigenvalues, with corresponding eigenvectors
v1, ... , vk in Rn, then k cannot exceed the dimension of Rn, since
{v1, ... , vk} is a linearly independent set in Rn. Hence k ≤ n.

Another Corollary If A ∈ Mn(R) has n distinct eigenvalues, then A is
diagonalizable.

Proof A set consisting of one eigenvector for each of the n eigenvalues is
linearly independent and hence is a basis.
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Notes about determinants and characteristic polynomials

1 The characteristic polynomial of the square matrix A ∈ Mn(R) is the
determinant of λIn − A.

2 If t is a root of this polynomial, the t-eigenspace of A is the
nullspace of the matrix tIn − A.

3 The determinant of a diagonal or upper triangular matrix is the
product of the entries on its main diagonal.

4 A square matrix is block diagonal if its non-zero entries are all
contained in square blocks along its diagonal. The determinant of a
block diagonal matrix is the product of the determinants of its
diagonal blocks.

5 Similar matrices have the same characteristic polynomial and the
same eigenvalues and eigenspace dimensions, since they represent
the same linear transformation.
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Similar Matrices have the same Characteristic Polynomial

Suppose that A and B are similar square matrices, so that

B = P−1AP

for some invertible matrix P. Then

det(xI − B) = det(xI − P−1AP)

= det(P−1(xI )P − P−1AP)

= det
(
P−1(xI − A)P

)
= detP−1 det(xI − A) detP

= det(xI − A).

If two matrices have the same characteristic polynomial, they are not

necessarily similar. For example

[
1 0
0 1

]
and

[
1 1
0 1

]
have the same

characteristic polynomial but are not similar.
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Multiplicity of Eigenvalues

Let λ be an eigenvalue of a matrix A ∈ Mn(R). The algebraic
multiplicity of λ is the number of times that λ occurs as a root of the
characteristic polynomial. The geometric multiplicity is the dimension of
the t-eigenspace of A.

Example The matrix A =


3 0 0 0
0 3 0 0
0 0 4 1
0 0 0 4

 has two distinct eigenvalues, 3

and 4. Both have algebraic multiplicity 2; the characteristic polynomial is
(λ− 3)3(λ− 4)2.

The 3-eigenspace has dimension 2, its elements are


a
b
0
0

, for a, b ∈ R.

The 4-eigenspace only has dimension 1, its elements are


0
0
c
0

, for c ∈ R.

This A is not diagonalizable since it does not have four independent
eigenvectors.
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Geometric Multiplicity ≤ Algebraic Multiplicity

Theorem The geometric multplicity of an eigenvalue is at most equal to
its algebraic multiplicity.

Proof: Suppose that t has geometric multiplicity k as an eigenvalue of
the square matrix A ∈ Mn(R), and let {v1, ... , vk} be a basis for the
t-eigenspace of A. Extend this to a basis B of Rn, and let P be the
matrix whose columns are the elements of B. Then the first k columns of
P−1AP have t in the diagonal position and zeros elsewhere. It follows
that λ− t occurs at least k times as a factor of det(λIn − P−1AP), so
the algebraic multiplicity of t is at least k .

Corollary A matrix is diagonalizable if and only if the geometric
multiplicity of each of its eigenvalues is equal to the algebraic multiplicity.
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