Lecture 17: Eigenvectors and Diagonalizability

March 18, 2025

Lecture 17: Eigenvectors and Diagonalizability

- 1 The Rank-Nullity Theorem
- 2 Representing a linear transformation with respect to different bases
- 3 Diagonalizability
- 4 Non-diagonalizability

The Rank-Nullity Theorem

The Rank-Nullity Theorem relates the dimensions of the kernel, image and domain of a linear transformation. The dimension of the image of a linear trasformation is called its rank, and the dimension of the kernel is called the nullity. The rank of T is equal to the rank of the matrix of T, since the image of T is the column space of this matrix.

Theorem (Rank-Nullity Theorem) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, where V and W are finite-dimensional vector spaces over a field \mathbb{F} . Then

$$\dim(\ker T) + \operatorname{rank} T = n.$$

Informally, the Rank-Nullity Theorem says that the full dimension of the domain must be accounted for in the combination of the kernel and the image.

Proof of the Rank-Nullity Theorem

$$T: \mathbb{R}^n \to \mathbb{R}^m$$
 a linear transformation. $\left| \dim(\ker T) + \operatorname{rank} T = n \right|$

- I Write k for dim(ker T) and let $\{b_1, ..., b_k\}$ be a basis of ker T.
- **2** Extend this to a basis $\{b_1, ..., b_k, c_{k+1} ..., c_n\}$ of \mathbb{R}^n .
- Since T sends each b_i to 0, the image under T of every element of \mathbb{R}^n is a linear combination of $T(c_{k+1}), \ldots, T(c_n)$.
- 4 Also $\{T(c_{k+1}), \dots, T(c_n)\}$ is a linearly independent subset of \mathbb{R}^m . To see this, suppose for some scalars a_{k+1}, \dots, a_n that $a_{k+1}T(c_{k+1}) + a_{k+2}T(c_{k+2}) + \dots + a_nT(c_n) = 0$. Then

$$a_{k+1}c_{k+1}+\cdots+a_nc_n\in\ker T\Longrightarrow a_{k+1}c_{k+1}+\cdots+a_nc_n\in\langle b_1,\ldots,b_k\rangle.$$

- Since $\{b_1, \ldots, b_k, c_{k+1}, \ldots, c_n\}$ is linearly independent in \mathbb{R}^n , this means that $a_{k+1}c_{k+1} + a_{k+2}c_{k+2} + \cdots + a_nc_n = 0$, and each $a_j = 0$.
- 5 It follows that $\{T(c_{k+1}), \dots, T(c_n)\}$ is a basis for the image of T, so this image has dimension n-k, as required.

Example from Lecture 16

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by $v \to Av$, where $A = \begin{bmatrix} -2 & 2 & -1 \\ 4 & 5 & -1 \\ -4 & -8 & 3 \end{bmatrix}$. The matrix of T with respect to the (ordered) basis B of \mathbb{R}^3 with elements $b_1 = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}$, $b_2 = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$, $b_3 = \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix}$. is

$$\left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 7 \end{array}\right].$$

This means: $T(b_1) = 2b_1$, $T(b_2) = 3b_2$, $T(b_3) = 7b_3$, and for any $v \in \mathbb{R}^3$,

$$\underbrace{[T(v)]_B}_{B-\text{coordinates of }T(v)} = \underbrace{A'[v]_B}_{\text{matrix-vector product}}.$$

Rachel Quinlan MA203/283 Lecture 17 5 / 11

Change of basis again

Let P be the matrix with the basis vectors from B as columns.

From Lecture 15, P^{-1} is the change of basis matrix from the standard basis to B. For any element v of \mathbb{R}^3 , its B-coordinates are given by the matrix-vector product

$$[v]_B = P^{-1}v.$$

Equivalently, if we start with the B-coordinates, then the standard coordinates of v are given by

$$v = P[v]_B$$
.

So P itself is the change of basis matrix from B to the standard basis.

Similarity - the relation of A and A'

Starting with A, the matrix of $T : \mathbb{R}^3 \to \mathbb{R}^3$ with respect to the standard basis, how do we find A' the matrix of T with respect to B?

- **1** Take a vector v of \mathbb{R}^3 , written in B-coordinates as the column $[v]_B$.
- 2 Convert to standard coordinates (so that we can apply T by multiplying by A): take the product $P[v]_B$.
- 3 Apply T: left-multiply by A to get $AP[v]_B$. This column has the standard coordinates of T(v).
- 4 Convert to *B*-coordinates: left-multiply by P^{-1} , the change of basis matrix from standard to *B*. This gives $P^{-1}AP[v]_B$. This column has the *B*-coordinates of T(v).
- **5** Conclusion: For any element v of \mathbb{R}^3 , the B-coordinates of T(v) are given by $(P^{-1}AP)[v]_B$.

The B-matrix of T is $P^{-1}AP$, where P has the elements of B as columns.

Similar Matrices

Definition Two square matrices A and B are similar if $B = P^{-1}AP$ for an invertible matrix P.

Notes

- 1 Two distinct matrices are similar if and only if they represent the same linear transformation, with respect to different bases.
- 2 We can't tell by glancing at a pair of square matrices if they are similar or not, but there is one feature that is easy to check. The trace of a square matrix is the sum of the entries on the main diagonal, from top left to bottom right. If two matrices are similar, they have the same trace.
- 3 Similar matrices also have some other features in common, such as having the same determinant.
- 4 Our example showed that the 3×3 matrix $A = \begin{bmatrix} -2 & 2 & 1 \\ 4 & 5 & -1 \\ -4 & -8 & 3 \end{bmatrix}$ is similar to the diagonal matrix diag(2, -3, 7). We say A is diagonalizable in this situation.

Rachel Quinlan MA203/283 Lecture 17 8 / 11

A basis of eigenvectors

- I From the diagonal form of A' we have $T(b_1) = 2b_1$, $T(b_2) = -3b_2$ and $T(b_3) = 7b_3$. This means that each of the basis elements b_1 , b_2 , b_3 is mapped by T to a scalar multiple of itself each of them is an *eigenvector* of T.
- 2 We can rearrange the version $P^{-1}AP = A'$ to AP = PA'. Bearing in mind that $P = \begin{bmatrix} | & | & | \\ b_1 & b_2 & b_3 \\ | & | & | \end{bmatrix}$ and that A' = diag(2, -3, 7), this is saying that

$$A \left[\begin{array}{ccc} | & | & | \\ b_1 & b_2 & b_3 \\ | & | & | \end{array} \right] = \left[\begin{array}{ccc} | & | & | \\ b_1 & b_2 & b_3 \\ | & | & | \end{array} \right] \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 7 \end{array} \right] \Longrightarrow \left[\begin{array}{ccc} | & | & | \\ Ab_1 & Ab_2 & Ab_3 \\ | & | & | \end{array} \right] = \left[\begin{array}{ccc} | & | & | \\ 2b_1 & -3b_2 & 7b_3 \\ | & | & | \end{array} \right]$$

This means that $Ab_1 = 2b_1$, $Ab_2 = -3b_2$ and $Ab_3 = 7b_3$, so that $B = \{b_1, b_2, b_3\}$ is a basis of \mathbb{R}^3 consisting of eigenvectors of A.

9 / 11

Eigenvectors and Diagonalizability

Definition An eigenvector of a square matrix A is a non-zero column vector v for which $Av = \lambda v$ for some scalar λ , called the eigenvalue of A to which v corresponds.

The eignvalues of A are the roots of its characteristic polynomial $det(\lambda I_n - A)$.

The eigenspace corresponding to a particular eigenvalue λ is the set of all vectors v satisfying $Av = \lambda v$. It is a subpsace of the relevant \mathbb{R}^n , of dimension at least 1.

The matrix $A \in M_n(\mathbb{R})$ is diagonalizable if and only if \mathbb{R}^n has a basis consisting of eigenvectors of A. In this case $P^{-1}AP$ is diagonal, where P is a matrix whose n columns are linearly independent eigenvectors of A. The diagonal entries of $P^{-1}AP$ are the corresponding eigenvalues.

Non-diagonalizabilty (two examples)

For $A \in M_n(\mathbb{R})$, it does not always happen that \mathbb{R}^n has a basis consisting of eigenvectors of A.

Examples

- 1 The matrix $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is diagonalizable in $M_2(\mathbb{C})$ but not in $M_2(\mathbb{R})$.

 This matrix represents a clockwise rotation through 90° about the
 - This matrix represents a clockwise rotation through 90° about the origin. It does not fix any line in \mathbb{R}^2 . Its characteristic polynomial is $\lambda^2 + 1$.
- The matrix $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is not diagonalizable even over \mathbb{C} . This matrix represents a horizontal shear. Its characteristic polynomial is $(\lambda-1)^2$ but its 1-eigenspace consists only of the X-axis. It does not have two linearly independent eigenvectors.