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The Rank-Nullity Theorem

The Rank-Nullity Theorem relates the dimensions of the kernel, image
and domain of a linear transformation. The dimension of the image of a
linear trasformation is called its rank, and the dimension of the kernel is
called the nullity. The rank of T is equal to the rank of the matrix of T,
since the image of T is the column space of this matrix.

Theorem (Rank-Nullity Theorem) Let T : R” — R™ be a linear
transformation, where V' and W are finite-dimensional vector spaces over
a field F. Then

dim(ker T) +rankT = n.

Informally, the Rank-Nullity Theorem says that the full dimension of the
domain must be accounted for in the combination of the kernel and the
image.
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Proof of the Rank-Nullity Theorem

T :R" — R™ a linear transformation. ‘dim(ker T)+rankT = n. ‘

Write k for dim(ker T) and let {b1, ..., bx} be a basis of ker T.
Extend this to a basis {b1, ..., bk, Ck+1 ..., Cn} Of R".

Since T sends each b; to 0, the image under T of every element of
R"™ is a linear combination of T(ck+1), ..., T(cn).

Also {T(ck+1), .-, T(cn)} is a linearly independent subset of R™.
To see this, suppose for some scalars ag41, ..., a, that

ak+1 T(Cks1) + ary2T(Cks2) +---+anT(cn) = 0. Then
ak11Ck41+ - -FanCh € ker T — Ak+1Ck+1+- - +ancy € <b1, . bk>.
Since {b1, ..., bk, Ck+1 ..., cn} is linearly independent in R”, this

means that axy1Ckt1 + ak42Ck42 + -+ anch =0, and each a; = 0.

It follows that { T(ck+1), ..., T(cn)} is a basis for the image of T, so
this image has dimension n — k, as required.
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Example from Lecture 16

Let T : R3 — R3 be the linear transformation defined by v — Av, where

a—| "¢ 5 -1 |. The matrix of T with respect to the (ordered) basis B

—4 -8 3

of R3 with eIementsm:{é},bz:[ —i:|,b3=|: —?}Ais
4 0 2

2 0
0 -3 0
0 7

o W o

This means: T(by) = 2by, T(b2) = 3by, T(b3) = 7bs, and for any
v € R3,

[T(V)]s = Alvls
N—— ——
B—coordinates of T(v) matrix—vector product
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Change of basis again

Let P be the matrix with the basis vectors from B as columns.

From Lecture 15, P~1 is the change of basis matrix from the standard
basis to B. For any element v of R3, its B-coordinates are given by the

matrix-vector product
[vlg = P lv.

Equivalently, if we start with the B-coordinates, then the standard
coordinates of v are given by

v = P[v]g.

So P itself is the change of basis matrix from B to the standard basis.
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Similarity - the relation of A and A’

Starting with A, the matrix of T : R3 — R3 with respect to the standard
basis, how do we find A’ the matrix of T with respect to B?

Take a vector v of R3, written in B-coordinates as the column [v]g.
Convert to standard coordinates (so that we can apply T by
multiplying by A): take the product P[v]g.

Apply T: left-multiply by A to get AP[v]g. This column has the
standard coordinates of T(v).

Convert to B-coordinates: left-multiply by P!, the change of basis
matrix from standard to B. This gives P~*AP[v]g. This column
has the B-coordinates of T(v).

Conclusion: For any element v of R3, the B-coordinates of T(v) are
given by (P~1AP)[v]5.

The B-matrix of T is P~1AP, where P has the elements of B as cqumns.‘
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Similar Matrices

Definition Two square matrices A and B are similar if B = P~YAP for an
invertible matrix P.

Notes

Two distinct matrices are similar if and only if they represent the
same linear transformation, with respect to different bases.

We can’t tell by glancing at a pair of square matrices if they are
similar or not, but there is one feature that is easy to check. The
trace of a square matrix is the sum of the entries on the main
diagonal, from top left to bottom right. If two matrices are similar,
they have the same trace.

Similar matrices also have some other features in common, such as
having the same determinant.

. -2 2 1 .
Our example showed that the 3 x 3 matrix a=| 4 5 -1 ]ls
—4 -8 3

similar to the diagonal matrix diag(2, —3,7). We say A is
diagonalizable in this situation.
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A basis of eigenvectors

From the diagonal form of A’ we have T(by) = 2by, T(by) = —3bs
and T(b3) = 7b3. This means that each of the basis elements
b1, by, b3 is mapped by T to a scalar multiple of itself - each of
them is an eigenvector of T.

We can rearrange the version P~YAP = A’ to AP = PA’. Bearing in

.
mind that P = | by by b3 | and that A’ = diag(2, —3,7), this is

saying that

| \ I [ | \ 2 0 0 [ [ \ \ | \
A |: by by b3 = |b by b3 0o -3 0 = [Ab; Aby  Ab3| = |2by —3by Ths
LI | \ 0 o 7 \ \ \ \ I \

This means that Aby = 2by, Aby = —3by and Absz = 7bs, so that
B = {by, by, b3} is a basis of R consisting of eigenvectors of A.
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Eigenvectors and Diagonalizability

Definition An eigenvector of a square matrix A is a non-zero column
vector v for which Av = Av for some scalar A, called the eigenvalue of A
to which v corresponds.

The eignvalues of A are the roots of its characteristic polynomial
det(Al, — A).

The eigenspace corresponding to a particular eigenvalue X is the set of all
vectors v satsfying Av = Av. It is a subpsace of the relevant R”, of
dimension at least 1.

The matrix A € M,(R) is diagonalizable if and only if R" has a basis
consisting of eigenvectors of A. In this case P"1AP is diagonal, where P
is a matrix whose n columns are linearly independent eigenvectors of A.
The diagonal entries of P~ AP are the corresponding eigenvalues.
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Non-diagonalizabilty (two examples)

For A € Mp(R), it does not always happen that R” has a basis consisting
of eigenvectors of A.

Examples
: 0o —-1. . . : .
The matrix A = 1 ol diagonalizable in M>(C) but not in

Ms(R).

This matrix represents a clockwise rotation through 90° about the
origin. It does not fix any line in R?. Its characteristic polynomial is
A2+ 1.

1 1|. . :

0 1] is not diagonalizable even over C.
This matrix represents a horizontal shear. Its characteristic
polynomial is (A — 1)? but its 1-eigenspace consists only of the
X-axis. It does not have two linearly independent eigenvectors.

The matrix B = [
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