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The Rank-Nullity Theorem

The Rank-Nullity Theorem relates the dimensions of the kernel, image
and domain of a linear transformation. The dimension of the image of a
linear trasformation is called its rank, and the dimension of the kernel is
called the nullity. The rank of T is equal to the rank of the matrix of T ,
since the image of T is the column space of this matrix.

Theorem (Rank-Nullity Theorem) Let T : Rn → Rm be a linear
transformation, where V and W are finite-dimensional vector spaces over
a field F. Then

dim(kerT ) + rankT = n.

Informally, the Rank-Nullity Theorem says that the full dimension of the
domain must be accounted for in the combination of the kernel and the
image.
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Proof of the Rank-Nullity Theorem

T : Rn → Rm a linear transformation. dim(kerT ) + rankT = n.

1 Write k for dim(kerT ) and let {b1, ... , bk} be a basis of kerT .

2 Extend this to a basis {b1, ... , bk , ck+1 ... , cn} of Rn.

3 Since T sends each bi to 0, the image under T of every element of
Rn is a linear combination of T (ck+1), ... ,T (cn).

4 Also {T (ck+1), ... ,T (cn)} is a linearly independent subset of Rm.
To see this, suppose for some scalars ak+1, ... , an that
ak+1T (ck+1) + ak+2T (ck+2) + · · ·+ anT (cn) = 0. Then

ak+1ck+1+· · ·+ancn ∈ kerT =⇒ ak+1ck+1+· · ·+ancn ∈ 〈b1, ... , bk〉.

Since {b1, ... , bk , ck+1 ... , cn} is linearly independent in Rn, this
means that ak+1ck+1 + ak+2ck+2 + · · ·+ ancn = 0, and each aj = 0.

5 It follows that {T (ck+1), ... ,T (cn)} is a basis for the image of T , so
this image has dimension n − k, as required.
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Example from Lecture 16

Let T : R3 → R3 be the linear transformation defined by v → Av , where

A =

 −2 2 1
4 5 −1
−4 −8 3

. The matrix of T with respect to the (ordered) basis B

of R3 with elements b1 =

 1
0
4

 , b2 =

 2
−1
0

 , b3 =

 0
−1
2

 . is

 2 0 0
0 −3 0
0 0 7

 .

This means: T (b1) = 2b1, T (b2) = 3b2,T (b3) = 7b3, and for any
v ∈ R3,

[T (v)]B︸ ︷︷ ︸
B−coordinates of T (v)

= A′[v ]B︸ ︷︷ ︸
matrix−vector product

.
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Change of basis again

Let P be the matrix with the basis vectors from B as columns.

From Lecture 15, P−1 is the change of basis matrix from the standard
basis to B. For any element v of R3, its B-coordinates are given by the
matrix-vector product

[v ]B = P−1v .

Equivalently, if we start with the B-coordinates, then the standard
coordinates of v are given by

v = P[v ]B .

So P itself is the change of basis matrix from B to the standard basis.
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Similarity - the relation of A and A′

Starting with A, the matrix of T : R3 → R3 with respect to the standard
basis, how do we find A′ the matrix of T with respect to B?

1 Take a vector v of R3, written in B-coordinates as the column [v ]B .

2 Convert to standard coordinates (so that we can apply T by
multiplying by A): take the product P[v ]B .

3 Apply T : left-multiply by A to get AP[v ]B . This column has the
standard coordinates of T (v).

4 Convert to B-coordinates: left-multiply by P−1, the change of basis
matrix from standard to B. This gives P−1AP[v ]B . This column
has the B-coordinates of T (v).

5 Conclusion: For any element v of R3, the B-coordinates of T (v) are
given by (P−1AP)[v ]B .

The B-matrix of T is P−1AP, where P has the elements of B as columns.
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Similar Matrices

Definition Two square matrices A and B are similar if B = P−1AP for an
invertible matrix P.

Notes

1 Two distinct matrices are similar if and only if they represent the
same linear transformation, with respect to different bases.

2 We can’t tell by glancing at a pair of square matrices if they are
similar or not, but there is one feature that is easy to check. The
trace of a square matrix is the sum of the entries on the main
diagonal, from top left to bottom right. If two matrices are similar,
they have the same trace.

3 Similar matrices also have some other features in common, such as
having the same determinant.

4 Our example showed that the 3× 3 matrix A =

 −2 2 1
4 5 −1
−4 −8 3

is

similar to the diagonal matrix diag(2,−3, 7). We say A is
diagonalizable in this situation.
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A basis of eigenvectors

1 From the diagonal form of A′ we have T (b1) = 2b1, T (b2) = −3b2
and T (b3) = 7b3. This means that each of the basis elements
b1, b2, b3 is mapped by T to a scalar multiple of itself - each of
them is an eigenvector of T .

2 We can rearrange the version P−1AP = A′ to AP = PA′. Bearing in

mind that P =

 | | |
b1 b2 b3
| | |

 and that A′ = diag(2,−3, 7), this is

saying that

A

 | | |
b1 b2 b3
| | |

 =

 | | |
b1 b2 b3
| | |

 2 0 0
0 −3 0
0 0 7

 =⇒

 | | |
Ab1 Ab2 Ab3
| | |

 =

 | | |
2b1 −3b2 7b3
| | |



This means that Ab1 = 2b1, Ab2 = −3b2 and Ab3 = 7b3, so that
B = {b1, b2, b3} is a basis of R3 consisting of eigenvectors of A.
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Eigenvectors and Diagonalizability

Definition An eigenvector of a square matrix A is a non-zero column
vector v for which Av = λv for some scalar λ, called the eigenvalue of A
to which v corresponds.

The eignvalues of A are the roots of its characteristic polynomial
det(λIn − A).

The eigenspace corresponding to a particular eigenvalue λ is the set of all
vectors v satsfying Av = λv . It is a subpsace of the relevant Rn, of
dimension at least 1.

The matrix A ∈ Mn(R) is diagonalizable if and only if Rn has a basis
consisting of eigenvectors of A. In this case P−1AP is diagonal, where P
is a matrix whose n columns are linearly independent eigenvectors of A.
The diagonal entries of P−1AP are the corresponding eigenvalues.
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Non-diagonalizabilty (two examples)

For A ∈ Mn(R), it does not always happen that Rn has a basis consisting
of eigenvectors of A.

Examples

1 The matrix A =

[
0 −1
1 0

]
is diagonalizable in M2(C) but not in

M2(R).
This matrix represents a clockwise rotation through 90◦ about the
origin. It does not fix any line in R2. Its characteristic polynomial is
λ2 + 1.

2 The matrix B =

[
1 1
0 1

]
is not diagonalizable even over C.

This matrix represents a horizontal shear. Its characteristic
polynomial is (λ− 1)2 but its 1-eigenspace consists only of the
X -axis. It does not have two linearly independent eigenvectors.
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