Lecture 14: Bases and Dimension

March 4, 2025

1 Key definitions

2 The replacement theorem and some consequences

3 The number of elements in a basis

¹ "Bases" is the plural of "basis"

Some definitions to recall

Let V be a vector space (e.g. $V = \mathbb{R}^n$). Let S be a (finite) subset of V.

- **1** S is a spanning set of V (or S spans V) if every element of V is a linear combination of the elements of S.
- 2 The span of S, denoted (S), is the set of all linear combinations of element of S, a subspace of V.
- S is linearly independent if no element of S is a linear combination of the other elements of S.
 Equivalently, if no proper subset of S spans (S).
- S is a basis of V if S is linearly independent AND S spans V.
 A basis is a minimal spanning set.
 A basis is a maximal linearly independent set.
- **5** Every finite spanning set of V contains a basis of V.
- Every linearly independent subset of V can be extended to a basis of V (we have not proved this yet!).

Theorem Let V be a vector space that has a basis with n elements. Then every linearly independent set with n elements is a basis of V.

- I If V has a spanning set with n elements, a linearly independent set in V cannot have more that n elements (by the same substitution argument).
- If V has a linearly independent set with n elements, then a spanning set in V must have at least n elements (this is the same statement from the alternative viewpoint).

The number of elements in a linearly independent set cannot exceed the number in a spanning set. Every spanning set has at least as many elements as the biggest independent set.

Every basis has the same number of elements

- Let V be a (finite dimensional) vector space, and let B and B' be bases of V. Then
 - B is linearly independent and B' is a spanning set, so B has at most as many elements as B'.
 - B is a spanning set and B' is linearly independent, so B has at least as many elements as B'.

It follows that B and B' have the same number of elements.

The dimension of V is the number of elements in a basis of V.

Exercise If dim V = n, then every linearly independent subset of V has at most n elements, and every spanning set in V has at least n elements. Every spanning set with exactly n elements is a basis, and every linearly independent set with exactly n elements is a basis.

Note Every vector space that has a finite spanning set has a finite basis (since we can discard elements from a finite spanning set until a basis remains).

Examples

- [1] {1, x, x², x³} is a basis for the vector space P₃ of all polynomials of degree at most 3 with real coefficients. It is linearly independent because the only way to write the zero polynomial in the form a₃x³ + a₂x² + a₁x + a₀ is by taking a₀ = a₁ = a₂ = a₃ = 0. Another basis of P₃, preferable for some applications, consists of the first four Legendre polynomials: 1, x, ½(3x² 1), ½(5x³ 3x).
- 2 The row space of a $m \times n$ matrix is the subspace of \mathbb{R}^n spanned by its rows. When we reduce the matrix to RREF, we are calculating a particular basis of its rowspace.
- 3 In \mathbb{R}^2 , the reflection in the line y = 2x sends (1, 0) to $\left(-\frac{3}{5}, \frac{4}{5}\right)$ and (0, 1) to $\left(\frac{4}{5}, \frac{3}{5}\right)$. Its (standard) matrix is $\begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}$. The same reflection sends (1, 2) to (1, 2) and (2, -1) to (-2, 1). It is easier to describe it in terms of the basis $\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \end{bmatrix} \right\}$.