Lecture 13: Linear Independence and the Replacement Theorem

March 4, 2025

- 1 Checking Linear Independence
- 2 Finite dimensional spaces

4 The replacement theorem

Linear Dependence and Linear Independence

For a subset $\{v_1, \ldots, v_k\}$ of \mathbb{R}^n , suppose that v_k is a linear combination of v_1, \ldots, v_{k-1} . Then every linear combination of v_1, \ldots, v_k is "already" a linear combination of v_1, \ldots, v_{k-1} and

$$\langle v_1, \ldots, v_k \rangle = \langle v_1, \ldots, v_{k-1} \rangle.$$

If we are interested in the span of $\{v_1, ..., v_k\}$ we could throw away v_k and this would not change the span.

Definition A set of (at least two) vectors in \mathbb{R}^n is linearly dependent if one of its elements is a linear combination of the others. A set of vectors in \mathbb{R}^n is linearly independent if it is not linearly dependent.¹

Linear independence means that throwing away any element results in shrinking the span.

MA203/283 Lecture 13

¹Small print: a set with just one vector is linearly independent, unless this vector is the zero vector. Any set that contains the zero vector is linearly dependent.

Example from Lecture 2

The three equations of the system, or the three rows of the original augmented matrix, formed a *linearly dependent set*. One row was eliminated by adding a linear combination of the other two. All the information in the system was contained in just (any) two of the three equations.

The non-zero rows of the reduced row-echelon form are linearly independent, and they span the rowspace of the original matrix. The rowspace is the subspace of \mathbb{R}^5 that is spanned by the rows.

Meaning of linear independence A set is linearly independent if none of its elements is a linear combination of the others.

This definition makes conceptual sense, but to use it as a test for linear independence would mean checking it separately for every element of the set - not so efficient. We have an alternative formulation for this purpose, which is logically equivalent but maybe a bit more obscure as a description.

A set of vectors is linearly independent if the only way to write the zero vector as a linear combination of its elements is by taking all the coefficients to be zero.

Test for linear independence

To decide if the set $\{v_1, ..., v_k\}$ is linearly independent, try to write the zero vector as a linear combination of the v_i :

$$\sum_{i=1}^{k} a_i v_i = a_1 v_1 + a_2 v_2 + \dots + a_k v_k = 0,$$

for scalars a_1, \ldots, a_k . If $a_i = 0$ for every *i* is the only solution, then v_1, \ldots, v_k are linearly independent. If there is another solution, they are linearly dependent.

Example Decide whether
$$\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$
 is a linearly independent subset of \mathbb{R}^3 . Solution By row reduction we find
$$\begin{bmatrix} 1&1&1\\0&0&1\\1&-1&1 \end{bmatrix} \begin{bmatrix} a\\b\\c \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \implies a = b = c = 0.$$

Conclusion The set is linearly independent.

Rachel Quinlan

MA203/283 Lecture 13

Definition A vector space V is finite dimensional if it contains a finite spanning set.

This means a set $\{v_1, \ldots, v_k\}$ of elements, with the property that every element of V is a linear combination of v_1, \ldots, v_k .

Examples

- **1** \mathbb{R}^n is finite dimensional, with $\{e_1, ..., e_n\}$ as a spanning set with n elements.
- 2 M_{m×n}(ℝ) is finite dimensional, with {E_{ij}}_{1≤i≤m, 1≤j≤n} as a spanning set with mn elements. The matrix E_{ij} has 1 in position (*i*, *j*) and zero in all other positions.
- 3 An example of vector space that is not finite dimensional is R[x], the space of all polynomials with coefficients in R. If S is any finite set of polynomials, then the degree of a linear combination of elements of S can't exceed the highest degree of a polynomial in S.

A basis of a vector space is a linearly independent spanning set.

- A basis is a minimal spanning set, one in which every element is needed, one that does not contain a smaller spanning set.
- Example: {e₁, e₂, e₃} is a basis of ℝ³.
 In general {e₁,..., e_n} is a basis of ℝⁿ.
- $\{(1,3), (1,4)\}$ is a basis of \mathbb{R}^2 .
- If S is a finite spanning set of a vector space V, then S contains a basis of V. If S is not linearly independent, then some $v \in S$ is a linear combination of the other elements of S. Throwing v away leaves a smaller set that still spans V. Repeat this step until a basis remains.

Theorem Let V be a vector space that has a basis with n elements. Then every linearly independent set with n elements is a basis of V.

Proof (for n = 3). Suppose $B = \{b_1, b_2, b_3\}$ is a basis of V, and let $\{y_1, y_2, y_3\}$ be a linearly independent subset of V.

1 $y_1 = a_1b_1 + a_2b_2 + a_3b_3$ for scalars a_1, a_2, a_3 , not all zero. We can assume (after maybe relabelling the b_i), that $a_1 \neq 0$. Then

$$b_1 = a_1^{-1}y_1 - a_1^{-1}a_2b_2 - a_1^{-1}a_3b_3.$$

So $b_1 \in \langle y_1, b_2, b_3 \rangle$ and $\{y_1, b_2, b_3\}$ spans V.

(Note that we have to use the fact that we can divide by non-zero scalars to write b_1 as a linear combination of y_1 , b_2 , b_3 .)

- Now y₂ ∈ ⟨y₁, b₂, b₃⟩ and y₂ is not a scalar multiple of y₁ (because {y₁, y₂, y₃} is linearly independent).
 So b₂ (or b₃) has non-zero coefficient in any description of y₂ as a linear combination of y₁, b₂, b₃.
 Replace again: {y₁, y₂, b₂} spans V.
- Same reasoning: we can replace b₂ with y₃ to conclude {y₁, y₂, y₃} spans V.

Conclusion $\{y_1, y_2, y_3\}$ is a basis of V.