
Section 2.3: Infinite sets and cardinality

Recall from Section 2.2 that

The cardinality of a finite set is defined as the number of elements
in it.

Two sets A and B have the same cardinality if (and only if) it is
possible to match each element of A to an element of B in such a
way that every element of each set has exactly one “partner” in the
other set.
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Section 2.3: Infinite sets and cardinality

Recall from Section 2.2 that

The cardinality of a finite set is defined as the number of elements
in it.

Two sets A and B have the same cardinality if (and only if) it is
possible to match each element of A to an element of B in such a
way that every element of each set has exactly one “partner” in the
other set.

In the case of finite sets, the second point above might seem to be
overcomplicating the issue, since we can tell if two finite sets have the
same cardinality by just counting their elements and noting that they
have the same number.
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The case of infinite sets

Two sets have the same cardinality if (and only if)
it is possible to match each element of A to an
element of B in such a way that every element of
each set has exactly one “partner” in the other set.
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The case of infinite sets

Two sets have the same cardinality if (and only if)
it is possible to match each element of A to an
element of B in such a way that every element of
each set has exactly one “partner” in the other set.

The notion of bijective correspondence is emphasized for two reasons.

It is occasionally possible to establish that two finite sets are in
bijective correspondence without knowing the cardinality of either of
them.

We can’t count the number of elements in an infinite set. However,
for a given pair of infinite sets, we could possibly show that it is or
isn’t possible to construct a bijective correspondence between them.
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Infinite sets having the same cardinality

Definition

Suppose that A and B are sets (finite or infinite). We say that A and B
have the same cardinality (written |A| = |B |) if a bijective
correspondence exists between A and B.

In other words, A and B have the same cardinality if it’s possible to
match each element of A to a different element of B in such a way that
every element of both sets is matched exactly once.
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Infinite sets having the same cardinality

Definition

Suppose that A and B are sets (finite or infinite). We say that A and B
have the same cardinality (written |A| = |B |) if a bijective
correspondence exists between A and B.

In other words, A and B have the same cardinality if it’s possible to
match each element of A to a different element of B in such a way that
every element of both sets is matched exactly once. In order to say that
A and B have different cardinalities we need to establish that it’s
impossible to match up their elements with a bijective correspondence. If
A and B are infinite sets, showing that such a thing is impossible can be
a formidable challenge.
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N and Z

Definition

The set N of natural numbers (“counting numbers”) consists of all the
positive integers. N = {1, 2, 3, ... }.

Example

Show that N and Z have the same cardinality.

We need to fill the right-hand column of the table below with the integers
in some order, in such a way that each integer appears there exactly once.

N Z
1 ←→ ?
2 ←→ ?
3 ←→ ?
4 ←→ ?
... ←→ ...
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Bijective correspondence between N and Z

So we need to list all the integers on the right hand side, in such a way
that every integer appears once. Just following the natural order on the
integers won’t work, because then there is no first entry for our list.

N Z
1 ←→ ?
2 ←→ ?
3 ←→ ?
4 ←→ ?
... ←→ ...
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Bijective correspondence between N and Z

Starting at a particular integer like 0 and then following the natural order
won’t work, because then we will never get (for example) any negative
integers in our list.

N Z
1 ←→ ?
2 ←→ ?
3 ←→ ?
4 ←→ ?
... ←→ ...

Dr Rachel Quinlan MA180/MA186/MA190 Calculus Infinite sets and cardinality 124 / 218



Bijective correspondence between N and Z

Something that will work is suggested by following the arcs, starting from
0, in the picture below.

Z = {0, 1,−1, 2,−2, 3,−3, 4,−4, ... }
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Bijective correspondence N ←→ Z

We can start with 0, then list 1 and then −1, then 2 and then −2, then
3 and then −3 and so on. This is a systematic way of writing out all the
integers, in which each appears exactly once. Our table becomes

N Z
1 ←→ 0
2 ←→ 1
3 ←→ −1
4 ←→ 2
5 ←→ −2
6 ←→ 3
... ←→ ...
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Bijective correspondence N ←→ Z

We can start with 0, then list 1 and then −1, then 2 and then −2, then
3 and then −3 and so on. This is a systematic way of writing out all the
integers, in which each appears exactly once. Our table becomes

N Z
1 ←→ 0
2 ←→ 1
3 ←→ −1
4 ←→ 2
5 ←→ −2
6 ←→ 3
... ←→ ...

Exercise 41

What integer corresponds to the natural number 22 in the list?
In what position does the integer −63 appear?
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A more explicit version

If we want to be fully explicit about how this bijective correspondence
works, we can even give a formula for the integer that is matched to each
natural number. The correspondence above describes a bijective function
f : N −→ Z given for n ∈ N by

f (n) =





n
2 if n is even

−
�
n−1
2

�
if n is odd

As well as understanding this example at the informal/intuitive level
suggested by the picture above, think about the formula above, and
satisfy yourself that it does indeed descibe a bijection between N and Z.
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Curiosities of Infinite Sets

The example above demonstrates a curious thing that can happen when
considering cardinalities of infinite sets. The set N of natural numbers is
a proper subset of the the set Z of integers (this means that every
natural number is an integer, but the natural numbers do not account for
all the integers).

Yet we have just shown that N and Z can be put in bijective
correspondence. So it is possible for an infinite set to be in bijective
correspondence with a proper subset of itself, and hence to have the
same cardinality as a proper subset of itself.

This can’t happen for finite sets (why?).
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Countably Infinite Sets

Putting an infinite set in bijective correspondence with N amounts to
providing a robust and unambiguous scheme or instruction for listing all
its elements starting with a first, then a second, third, etc., in such a way
that it can be seen that every element of the set will appear exactly once
in the list.

Definition

A set is called countably infinite (or denumerable) if it can be put in
bijective correspondence with the set of natural numbers. A set is called
countable if it is either finite or countably infinite.

Basically, an infinite set is countable if its elements can be listed in an
inclusive and organised way. “Listable” might be a better word, but it is
not really used.
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Countability of Q

Thus the sets N and Z have the same cardinality. Maybe this is not so
surprising, because these sets have a strong geometric resemblance as
sets of points on the number line.
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Countability of Q

Thus the sets N and Z have the same cardinality. Maybe this is not so
surprising, because these sets have a strong geometric resemblance as
sets of points on the number line.

What is more surprising is that N (and hence Z) has the same cardinality
as the set Q of all rational numbers. These sets do not resemble each
other much geometrically. The natural numbers are sparse and evenly
spaced, whereas the rational numbers are densely packed into the
number line.
Nevertheless, as the following construction shows, Q is a countable set.
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Q is countable

We need to show that the rational numbers can be organized into a
numbered list in a systematic way that includes all of them. Such a list is
a one-to-correspondence with the set N of natural numbers.

Start with the following array of fractions.

... −3/1 −2/1 −1/1 0/1 1/1 2/1 3/1 ...

... −3/2 −2/2 −1/2 0/2 1/2 2/2 3/2 ...

... −3/3 −2/3 −1/3 0/3 1/3 2/3 3/3 ...

... −3/4 −2/4 −1/4 0/4 1/4 2/4 3/4 ...

...
...

...
...

...
...

...
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Q is countable

We need to show that the rational numbers can be organized into a
numbered list in a systematic way that includes all of them. Such a list is
a one-to-correspondence with the set N of natural numbers.
Construct a path through the whole array :

... −3/1 −2/1 ← −1/1 0/1 → 1/1 2/1 → 3/1 ...
↑ ↓ ↑ ↓ ↑ ↓

... −3/2 −2/2 −1/2 ← 0/2 ← 1/2 2/2 3/2 ...
↑ ↓ ↑ ↓

... −3/3 −2/3 → −1/3 → 0/3 → 1/3 → 2/3 3/3 ...
↑ ↓

... −3/4 ← −2/4 ← −1/4 ← 0/4 ← 1/4 ← 2/4 ← 3/4 ...

...
...

...
...

...
...

...
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Q is countable

In these fractions, the numerators increase through all the integers as we
travel along the rows, and the denominators increase through all the
natural numbers as we travel downwards through the columns.
Every rational number occurs somewhere in the array.

This path determines a listing of all the fractions in the array, that starts
as follows

0/1, 1/1, 1/2, 0/2, −1/2, −1/1, −2/1, −2/2, −2/3, −1/3, 0/3, 1/3, 2/3,
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Q is countable

0/1, 1/1, 1/2, 0/2, −1/2, −1/1, −2/1, −2/2, −2/3, −1/3, 0/3, 1/3,

2/3, 2/2, 2/1, 3/1, 3/2, 3/3, 3/4, ...

What this construction demonstrates is a bijective correspondence
between the set N of natural numbers and the set of all fractions in our
array.
This is not (exactly) a bijective correspondence between N and Q.

Exercise 42

Why not? (Think about this before reading on.)
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Q is countable

0/1, 1/1, 1/2, 0/2, −1/2, −1/1, −2/1, −2/2, −2/3, −1/3, 0/3, 1/3,

2/3, 2/2, 2/1, 3/1, 3/2, 3/3, 3/4, ...

What this construction demonstrates is a bijective correspondence
between the set N of natural numbers and the set of all fractions in our
array.
This is not (exactly) a bijective correspondence between N and Q.

Exercise 42

Why not? (Think about this before reading on.)

The reason why not is that every rational number appears many times in
our array.
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Q is countable

In order to get a bijective correspondence between N and Q, construct a
list of all the rational numbers from the array as above, but whenever a
rational number is encountered that has already appeared, leave it out.
Our list will begin

0/1, 1/1, 1/2, −1/2, −1/1, −2/1, −2/3, −1/3, 1/3, 2/3, 2/1,

3/1, 3/2, 3/4, ...

We conclude that the rational numbers are countable.
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Q is countable

In order to get a bijective correspondence between N and Q, construct a
list of all the rational numbers from the array as above, but whenever a
rational number is encountered that has already appeared, leave it out.
Our list will begin

0/1, 1/1, 1/2, −1/2, −1/1, −2/1, −2/3, −1/3, 1/3, 2/3, 2/1,

3/1, 3/2, 3/4, ...

We conclude that the rational numbers are countable.

Note : Unlike our one-to-one correspondence between N and Z, in this
case we cannot write down a simple formula to tell us what rational
number will be Item 34 on our list (i.e. corresponds to the natural
number 34) or where in our list the rational number 292/53 will appear.
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Bounded and unbounded subsets of R

Basically, a subset X of R is bounded if, on the number line, its elements
do not extend indefinitely to the left or right. In other words there exist
real numbers a and b with a < b, for which all the points of X are in the
interval (a, b).

Definition

Let X be a subset of R. Then X is bounded below if there exists a real
number a with a < x for all elements x of X . (Note that a need not
belong to X here).
The set X is bounded above if there exists a real number b with x < b
for elements x of X . (Note that b need not belong to X here).
The set X is bounded if it is bounded above and bounded below
(otherwise it’s unbounded).
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Bounded and unbounded sets

Example

1 Q is unbounded.

2 N is bounded below but not above.

3 (0, 1), [0, 1], [2, 100] are bounded.

4 {cos x : x ∈ R} is bounded, since cos x can only have values
between −1 and 1.

5 All finite subsets of R are bounded, and some infinite subsets are.

Question: Is it possible for a bounded set to have the same cardinality
as an unbounded set?
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Open intervals

In our next example we show that the set of all the real numbers has the
same cardinality as an open interval on the real line.
First we note that all open intervals have the same cardinality as each
other.

Exercise 43

Show that the the open interval (0, 1) has the same cardinality as

1 The open interval (−1, 1)

2 The open interval (1, 2)

3 The open interval (2, 6).
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The interval
�
−π

2 ,
π
2

�

Example

Show that R has the same cardinality as the open interval
�
−π

2 ,
π
2

�

In order to do this we have to establish a bijective correspondence
between the interval

�
−π

2 ,
π
2

�
and the full set of real numbers.

An example of a function that provides us with such a bijective
correspondence is familiar from calculus/trigonometry.
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(−π
2 ,

π
2 ) and R

Recall that for a number x in the interval (−π
2 ,

π
2 ), tan x is defined as

follows: travel from (1, 0) a distance |x | along the circumference of the
unit circle, anti-clockwise if x is positive and clockwise if x is negative.
We arrive at a point which is in the right-hand side of the unit circle.

Now tan x is the slope of the line that connects the origin to this point
(whose y and x-coordinates are sin x and cos x respectively).
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tan x gives a bijection

Now tan 0 = 0, and as x increases from 0 towards π
2 , the line segment in

question rotates about the origin into the first quadrant, its slope
increases continuously from zero, without limit as x approaches π

2 . So
every positive real number is the tan of exactly one x in the range (0, π2 ).

For the same reason, the values of tan x include every negative real
number exactly once as x runs between 0 and −π

2 .
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tan x gives a bijection

Thus for x ∈
�
−π

2 ,
π
2

�
the correspondence

x ←→ tan x

establishes a bijection between the open interval
�
−π

2 ,
π
2

�
and the full set

of real numbers.

We conclude that the interval
�
−π

2 ,
π
2

�
has the same cardinality as R.

Note: This assertion is unrelated to the concept of countability discussed
earlier.
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Some Remarks

1 We don’t know yet if R (or
�
−π

2 ,
π
2 )
�
has the same cardinality as N

- we don’t know if R is countable.

2 The interval
�
−π

2 ,
π
2

�
may seem like an odd choice for an example

like this. However, note that the interval
�
−π

2 ,
π
2

�
is in bijective

correspondence with the interval (−1, 1), via the function that just
multiplies everything by 2

π .
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Learning outcomes for Section 2.3

This section contains some very challenging concepts. You will probably
need to invest some serious intellectual effort in order to arrive at a good
understanding of them. This is an effort worth making as it has the
potential to really expand your view of what mathematics is about.
After studying this section you should be able to

Discuss the concept of bijective correspondence for infinite sets;

Show that N and Z have the same cardinality by exhibiting a
bijective correspondence between them;

Explain what is meant by a countable set and show that Q is
countable;

Exhibit a bijective correspondence between R and the interval�
−π

2 ,
π
2

�
and hence show that R has the same cardinality as the

interval (a, b) for any real numbers a and b with a < b.
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Section 2.4: R is uncountable

Our goal in this section is to show that the set R of real numbers is
uncountable or non-denumerable; this means that its elements cannot be
listed, or cannot be put in bijective correspondence with the natural
numbers.

We saw at the end of Section 2.3 that R has the same cardinality as the
interval (−π

2 ,
π
2 ), or the interval (−1, 1), or the interval (0, 1). We will

show that the open interval (0, 1) is uncountable.
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(0, 1) is uncountable

This assertion and its proof date back to the 1890’s and to Georg
Cantor. The proof is often referred to as “Cantor’s diagonal argument”
and applies in more general contexts than we will see in these notes.

Georg Cantor : born in St Petersburg (1845), died in Halle (1918)

Theorem 44

The open interval (0, 1) is not a countable set.
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The open interval (0, 1) is not a countable set

We recall precisely what this set is.

It consists of all real numbers that are greater than zero and less
than 1, or equivalently of all the points on the number line that are
to the right of 0 and to the left of 1.

It consists of all numbers whose decimal representation have only 0
before the decimal point (except 0.000 ... which is equal to 0, and
0.99999 ... which is equal to 1).

Note that the digits after the decimal point may terminate in an
infinite string of zeros, or may have a repeating pattern to their
digits, or may not have either of these properties. The interval (0, 1)
includes all these possibilities.

Dr Rachel Quinlan MA180/MA186/MA190 Calculus R is uncountable 146 / 218



A hypothetical bijective correspondence

Our goal is to show that the interval (0, 1) cannot be put in bijective
correspondence with the set N of natural numbers. Our strategy is to
show that no attempt at constructing a bijective correspondence between
these two sets can ever be complete; it can never involve all the real
numbers in the interval (0, 1) no matter how it is devised.
So imagine that we had a listing of the elements of the interval (0, 1).
Such a correspondence would have to look something like the following.

N (0, 1)

1 ←→ 0.13567324 ...
2 ←→ 0.10000000 ...
3 ←→ 0.32323232 ...
4 ←→ 0.56834662 ...
5 ←→ 0.79993444 ...
...

...
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Can this list be complete?

Our problem is to show that no matter how the right hand column is
constructed, it can’t contain every sequence of digits from 1 to 9. We do
this by exhibiting an example of a sequence that can’t possibly be there.

N (0, 1)

1 ←→ 0.13567324 ...
2 ←→ 0.10000000 ...
3 ←→ 0.32323232 ...
4 ←→ 0.56834662 ...
5 ←→ 0.79993444 ...
...

...
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Can this list be complete?

Our problem is to show that no matter how the right hand column is
constructed, it can’t contain every sequence of digits from 1 to 9. We do
this by exhibiting an example of a sequence that can’t possibly be there.

N (0, 1)

1 ←→ 0.13567324 ...
2 ←→ 0.10000000 ...
3 ←→ 0.32323232 ...
4 ←→ 0.56834662 ...
5 ←→ 0.79993444 ...
...

...

Look at the first digit after the decimal point in Item 1 in the list. If this
is 1, write 2 as the first digit after the decimal point in x . Otherwise,
write 1 as the first digit after the decimal point in x . So x differs in its
first digit from Item 1 in the list.
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Can this list be complete?

Our problem is to show that no matter how the right hand column is
constructed, it can’t contain every sequence of digits from 1 to 9. We do
this by exhibiting an example of a sequence that can’t possibly be there.

N (0, 1)

1 ←→ 0.13567324 ...
2 ←→ 0.10000000 ...
3 ←→ 0.32323232 ...
4 ←→ 0.56834662 ...
5 ←→ 0.79993444 ...
...

...

Look at the second digit after the decimal point in Item 2 in the list. If
this is 1, write 2 as the second digit after the decimal point in x .
Otherwise, write 1 as the second digit after the decimal point in x . So x
differs in its second digit from Item 2 in the list.
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Can this list be complete?

Our problem is to show that no matter how the right hand column is
constructed, it can’t contain every sequence of digits from 1 to 9. We do
this by exhibiting an example of a sequence that can’t possibly be there.

N (0, 1)

1 ←→ 0.13567324 ...
2 ←→ 0.10000000 ...
3 ←→ 0.32323232 ...
4 ←→ 0.56834662 ...
5 ←→ 0.79993444 ...
...

...

Look at the third digit after the decimal point in Item 3 in the list. If this
is 1, write 2 as the third digit after the decimal point in x . Otherwise,
write 1 as the third digit after the decimal point in x . So x differs in its
third digit from Item 3 in the list.
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Can this list be complete?

Our problem is to show that no matter how the right hand column is
constructed, it can’t contain every sequence of digits from 1 to 9. We do
this by exhibiting an example of a sequence that can’t possibly be there.

N (0, 1)

1 ←→ 0.13567324 ...
2 ←→ 0.10000000 ...
3 ←→ 0.32323232 ...
4 ←→ 0.56834662 ...
5 ←→ 0.79993444 ...
...

...

Continue to construct x digit by digit in this manner. At the nth stage,
look at the nth digit after the decimal point in Item n in the list. If this
is 1, write 2 as the nth digit after the decimal point in x . Otherwise,
write 1 as the nth digit after the decimal point in x . So x differs in its
nth digit from Item n in the list.
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Cantor’s Diagonal Argument

What this process constructs is an element x of the interval (0, 1) that
does not appear in the proposed list. The number x is not Item 1 in the
list, because it differs from Item 1 in its 1st digit, it is not Item 2 in the
list because it differs from Item 2 in its 2nd digit, it is not Item n in the
list because it differs from Item n in its nth digit.

Note:

In our example, the number x would start 0.21111 ... .
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Cantor’s Diagonal Argument

What this process constructs is an element x of the interval (0, 1) that
does not appear in the proposed list. The number x is not Item 1 in the
list, because it differs from Item 1 in its 1st digit, it is not Item 2 in the
list because it differs from Item 2 in its 2nd digit, it is not Item n in the
list because it differs from Item n in its nth digit.

Note:

In our example, the number x would start 0.21111 ... .

According to our construction, our x will always have all its digits
equal to 1 or 2. So not only have we shown that the interval (0, 1)
is uncountable, we have even shown that the set of all numbers in
this interval whose digits are all either 1 or 2 is uncountable.
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Cantor’s Diagonal Argument

What this process constructs is an element x of the interval (0, 1) that
does not appear in the proposed list. The number x is not Item 1 in the
list, because it differs from Item 1 in its 1st digit, it is not Item 2 in the
list because it differs from Item 2 in its 2nd digit, it is not Item n in the
list because it differs from Item n in its nth digit.

Note:

In our example, the number x would start 0.21111 ... .

According to our construction, our x will always have all its digits
equal to 1 or 2. So not only have we shown that the interval (0, 1)
is uncountable, we have even shown that the set of all numbers in
this interval whose digits are all either 1 or 2 is uncountable.

A challenging exercise : why would the same proof not succeed in
showing that the set of rational numbers in the interval (0, 1) is
uncountable?
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More on Cantor

Informally, Cantor’s diagonal argument tells us that the “infinity” that is
the cardinality of the real numbers is “bigger” than the “infinity” that is
the cardinality of the natural numbers, or integers, or rational numbers.
He was able to use the same argument to construct examples of infinite
sets of different (and bigger and bigger) cardinalities. So he actually
established the notion of infinities of different magnitudes.
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More on Cantor

Informally, Cantor’s diagonal argument tells us that the “infinity” that is
the cardinality of the real numbers is “bigger” than the “infinity” that is
the cardinality of the natural numbers, or integers, or rational numbers.
He was able to use the same argument to construct examples of infinite
sets of different (and bigger and bigger) cardinalities. So he actually
established the notion of infinities of different magnitudes.

The work of Cantor was not an immediate hit within his own lifetime. It
met some opposition from the finitist school which held that only
mathematical objects that can be constructed in a finite number of steps
from the natural numbers could be considered to exist. Foremost among
the proponents of this viewpoint was Leopold Kronecker.
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Kronecker

Leopold Kronecker (1823-1891)

God made the integers, all else is the work of man.
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Kronecker

Leopold Kronecker (1823-1891)

God made the integers, all else is the work of man.

What good your beautiful proof on π? Why investigate such
problems, given that irrational numbers do not even exist?
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Hilbert

Cantor had influential admirers too, among them David Hilbert, who set
the course of much of 20th Century mathematics in his address to the
International Congress of Mathematicians in Paris in 1900.

David Hilbert (1862-1943)

No one shall expel us from
the paradise that Cantor
has created for us.
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Hilbert

Cantor had influential admirers too, among them David Hilbert, who set
the course of much of 20th Century mathematics in his address to the
International Congress of Mathematicians in Paris in 1900.

David Hilbert (1862-1943)

No one shall expel us from
the paradise that Cantor
has created for us.

What new methods and
new facts in the wide and
rich field of mathematical
thought will the new cen-
turies disclose?
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The Continuum Hypothesis

Hilbert’s address to the Paris Congress is one of the most famous
mathematical lectures ever. In it he posed 23 unsolved problems, the first
of which was Cantor’s Continuum Hypothesis.

The Continuum Hypothesis proposes that every subset of R is either
countable (i.e. has the same cardinality as N or Z or Q) or has the same
cardinality as R.

This seems like a question to which the answer should be either a
straightforward yes or no.
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The Continuum Hypothesis

Hilbert’s address to the Paris Congress is one of the most famous
mathematical lectures ever. In it he posed 23 unsolved problems, the first
of which was Cantor’s Continuum Hypothesis.

The Continuum Hypothesis proposes that every subset of R is either
countable (i.e. has the same cardinality as N or Z or Q) or has the same
cardinality as R.

It took the work of Kurt Gödel in the 1930s and Paul Cohen in the 1960s
to reach the conclusion that the answer to this question of Cantor is
undecidable. This means essentially that the standard axioms of set
theory do not provide enough structure to determine the answer to the
question.
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The Continuum Hypothesis

Hilbert’s address to the Paris Congress is one of the most famous
mathematical lectures ever. In it he posed 23 unsolved problems, the first
of which was Cantor’s Continuum Hypothesis.

The Continuum Hypothesis proposes that every subset of R is either
countable (i.e. has the same cardinality as N or Z or Q) or has the same
cardinality as R.

Both the Continuum Hypothesis and its negation are consistent with the
working rules of mathematics. People who work in set theory can
legitimately assume that either the Continuum Hypothesis is satisfied or
not. Fortunately most of us can get on with our mathematical work
without having to worry about this very often.
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The Continuum Hypothesis

Hilbert’s address to the Paris Congress is one of the most famous
mathematical lectures ever. In it he posed 23 unsolved problems, the first
of which was Cantor’s Continuum Hypothesis.

The Continuum Hypothesis proposes that every subset of R is either
countable (i.e. has the same cardinality as N or Z or Q) or has the same
cardinality as R.

References for this stuff:

1 Reuben Hersh, What is Mathematics, Really? Oxford University
Press, 1997

2 Eugenia Cheng, Beyond Infinity, Profile Books, 2017
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Note on Exam Questions

From the Summer 2015 exam:

Q2 (a) Give an example of

(i) An infinite subset of R in which every element is negative.

(ii) A subset of R that is bounded above but not below.

(iii) A subset of R that is infinite, countable and bounded.
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Learning Outcomes for Section 2.4

After studying this section you should be able to

Use Cantor’s diagonal argument to prove that the interval (0, 1) is
uncountable.

Make a few remarks about the history of this discovery.
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