
1.4.2 Integration by parts

In this section we discuss the technique of integration by parts, which is
essentially a reversal of the product rule of differentiation.

Example 24

Find

�
x cos x dx.

Solution How could x cos x arise as a derivative?
Well, cos x is the derivative of sin x . So, if you were differentiating
x sin x , you would get x cos x but according to the product rule you
would also get another term, namely sin x .

Conclusion:

�
x cos x dx = x sin x + cos x + C .
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Managing this process

What happened in this example was basically that the product rule was
reversed. This process can be managed in general as follows. Recall from
differential calculus that if u and v are expressions involving x , then

(uv)� = u�v + uv �.

Suppose we integrate both sides here with respect to x . We obtain

�
(uv)� dx =

�
u�v dx +

�
uv � dx =⇒ uv =

�
u�v dx +

�
uv � dx .

This can be rearranged to give the Integration by Parts Formula :

�
uv � dx = uv −

�
u�v dx .
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Here is the first example again, handled according to this scheme.

Example 25

Use the integration by parts technique to determine

�
x cos x dx.

Solution: Write
u = x v � = cos x
u� = 1 v = sin x

Then
�

x cos x dx =

�
uv � dx = uv −

�
u�v dx

= x sin x −
�

1 sin x dx

= x sin x + cos x + C .
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An antiderivative for ln x

Example 26

Determine

�
ln x dx.

Solution: Let u = ln x , v � = 1.
Then u� = 1

x , v = x .

�
ln x dx =

�
uv � dx = uv −

�
u�v dx

= x ln x −
�

1

x
x dx

= x ln x − x + C .

Note: This example shows that sometimes problems which are not
obvious candidates for integration by parts can be attacked using this
technique.
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Two Rounds of Integration by Parts

Sometimes two applications of the integration by parts formula are
needed, as in the following example.

Example 27

Evaluate

�
x2ex dx.

Solution: Let u = x2, v � = ex . Then u� = 2x , v = ex .
�

x2ex dx =

�
uv � dx = uv −

�
u�v dx

= x2ex −
�

2xex dx

= x2ex − 2

�
xex dx .

Let I =

�
xex dx .
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Two rounds (continued)

Let I =

�
xex dx

To evaluate I apply the integration by parts formula a second time.

u = x v � = ex

u� = 1 v = ex .

Then I =

�
xex dx = xex −

�
ex dx = xex − ex + C . Finally

�
x2ex dx = x2ex − 2xex + 2ex + C .
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An Example of Another Type

The next example shows another mechanism by which a second
application of the integration by parts formula can succeed where the
first is not enough.

Example 28

Determine

�
ex cos x dx.

Solution Let
u = ex v � = cos x
u� = ex v = sin x .

Then �
ex cos x dx = ex sin x −

�
ex sin x dx .
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�
ex cos x dx (continued)

For

�
ex sin x dx : Let

u = ex v � = sin x
u� = ex v = − cos x .

Then �
ex sin x dx = −ex cos x +

�
ex cos x dx ,

and
�

ex cos x dx = ex sin x −
�
−ex cos x +

�
ex cos x dx

�

=⇒ 2

�
ex cos x dx = ex sin x + ex cos x + C

=⇒
�

ex cos x dx =
1

2
(ex sin x + ex cos x) + C
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A Definite Integral

Example 29

Evaluate

� 1

0
(x + 3)e2x dx.

Solution: Write u = x + 3, v � = e2x ; u� = 1, v = 1
2e

2x

� 1

0
(x + 3)e2x dx =

�
uv � dx = (uv)|10 −

� 1

0
u�v dx

=
x + 3

2
e2x

����
1

0

− 1

2

� 1

0
e2x dx

=
x + 3

2
e2x

����
1

0

− 1

2
× 1

2
e2x

����
1

0

=
4

2
e2 − 3

2
e0 − 1

4
e2 +

1

4
e0 =

7

4
e2 − 5

4
.
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Section 1.4.3 : Partial Fraction Expansions

We know how to integrate polynomial functions; for example

�
2x2 + 3x − 4 dx =

2

3
x3 +

3

2
x2 − 4x + C .

We also know that �
1

x
dx = ln |x |+ C

and that �
1

xn
dx = − 1

n − 1

1

xn−1
+ C ,

for n �= 1.
This section is about integrating rational functions; i.e. quotients in
which the numerator and denominator are both polynomials.
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Adding Symbolic Fractions

Remark: If we were presented with the task of adding the expressions
2

x + 3
and

1

x + 4
, we would take (x + 3)(x + 4) as a common

denominator and write

2

x + 3
+

1

x + 4
=

2(x + 4)

(x + 3)(x + 4)
+

1(x + 3)

(x + 3)(x + 4)

=
2(x + 4) + 1(x + 3)

(x + 3)(x + 4)
=

3x + 11

(x + 3)(x + 4)
.

Question: Suppose we were presented with the expression
3x + 11

(x + 3)(x + 4)

and asked to rewrite it in the form
A

x + 3
+

B

x + 4
, for numbers A and B.

How would we do it?

Another Question Why would we want to do such a thing?
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The Partial Fraction Expansion

Write
3x + 11

(x + 3)(x + 4)
=

A

x + 3
+

B

x + 4
.

Then

3x + 11

(x + 3)(x + 4)
=

A(x + 4)

(x + 3)(x + 4)
+

B(x + 3)

(x + 3)(x + 4)
=

(A+ B)x + 4A+ 3B

(x + 3)(x + 4)
.

This means 3x + 11 = (A+ B)x + 4A+ 3B for all x , which means

A+ B = 3, and 4A+ 3B = 11.

Thus B = 1 and A = 2. So

3x + 11

(x + 3)(x + 4)
=

2

x + 3
+

1

x + 4
.
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An Alternative Method

We want
3x + 11 = A(x + 4) + B(x + 3),

for all real numbers x . If this statement is true for all x , then in
particular it is true when x = −4. Setting x = −4 gives

−12 + 11 = A(0) + B(−1) =⇒ B = 1.

Setting x = −3 gives

−9 + 11 = A(1) + B(0) =⇒ A = 2.

Thus
3x + 11

(x + 3)(x + 4)
=

2

x + 3
+

1

x + 4
.

Dr Rachel Quinlan MA180/MA186/MA190 Calculus Partial Fraction Expansions 74 / 218



Integration using partial fractions

Example 30

Determine

�
3x + 11

(x + 3)(x + 4)
dx.

Solution : Write
�

3x + 11

(x + 3)(x + 4)
dx =

�
2

x + 3
dx +

�
1

x + 4
dx

Then
�

3x + 11

(x + 3)(x + 4)
dx = 2 ln |x+3|+ln |x+4|+C = ln(x+3)2+ln |x+4|+C .
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Partial fractions with long division

Example 31

Determine

�
x3 + 3x + 2

x + 1
dx.

In this example the degree of the numerator exceeds the degree of the
denominator, so first apply long division to find the quotient and
remainder upon dividing x3 + 3x + 2 by x + 1.
We find that the quotient is x2 − x + 4 and the remainder is −2. Hence

x3 + 3x + 2

x + 1
= x2 − x + 4 +

−2

x + 1
.

Thus
�

x3 + 3x + 2

x + 1
dx =

�
x2 − x + 4 dx − 2

�
1

x + 1
dx

=
1

3
x3 − 1

2
x2 + 4x − 2 ln |x + 1|+ C .
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A Harder Example

Example 32

Determine

�
x + 1

(2x + 1)2(x − 2)
dx.

Solution: In this case the denominator has a repeated linear factor

2x + 1. It is necessary to include both
A

2x + 1
and

B

(2x + 1)2
in the

partial fraction expansion. We have

x + 1

(2x + 1)2(x − 2)
=

A

2x + 1
+

B

(2x + 1)2
+

C

x − 2
.

Then

x + 1

(2x + 1)2(x − 2)
=

A(2x + 1)(x − 2) + B(x − 2) + C (2x + 1)2

(2x + 1)2(x − 2)
.

and so

x + 1 = A(2x + 1)(x − 2) + B(x − 2) + C (2x + 1)2.
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A Harder Example

x = 2 : 3 = C (5)2 C = 3
25

x = −1
2 : 1

2 = B
�
−5

2

�
B = −1

5

x = 0 : 1 = A(1)(−2) + B(−2) + C (1)2 A = − 6
25

Thus
x + 1

(2x + 1)2(x − 2)
=

−6/25

2x + 1
+

−1/5

(2x + 1)2
+

3/25

x − 2

and
�

x + 1

(2x + 1)2(x − 2)
dx = − 6

25

�
1

2x + 1
dx − 1

5

�
1

(2x + 1)2
dx

+
3

25

�
1

x − 2
dx .
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A Harder Example

Call the three integrals on the right above I1, I2, I3 respectively.

I1 :

�
1

2x + 1
dx =

1

2
ln |2x + 1|(+C1).

Thus
�

x + 1

(2x + 1)2(x − 2)
dx = − 3

25
ln |2x+1|+ 1

10(2x + 1)
+

3

25
ln |x−2|+C .
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A Harder Example

Call the three integrals on the right above I1, I2, I3 respectively.

I1 :

�
1

2x + 1
dx =

1

2
ln |2x + 1|(+C1).

I2 :

�
1

(2x + 1)2
dx = − 1

2(2x + 1)
(+C2).

Thus
�

x + 1

(2x + 1)2(x − 2)
dx = − 3

25
ln |2x+1|+ 1

10(2x + 1)
+

3

25
ln |x−2|+C .
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A Harder Example

Call the three integrals on the right above I1, I2, I3 respectively.

I1 :

�
1

2x + 1
dx =

1

2
ln |2x + 1|(+C1).

I2 :

�
1

(2x + 1)2
dx = − 1

2(2x + 1)
(+C2).

I3 :

�
1

x − 2
dx = ln |x − 2|(+C3).

Thus
�

x + 1

(2x + 1)2(x − 2)
dx = − 3

25
ln |2x+1|+ 1

10(2x + 1)
+

3

25
ln |x−2|+C .
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Learning outcomes for Section 1.4

At the end of this section you should

Know the difference between a definite and indefinite integral and
be able to explain it accurately and precisely.

Be able to evaluate a range of definite and indefinite integrals using
the following methods:

direct methods;
suitably chosen substitutions;
integration by parts;
partial fraction expansions.
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