MA203/MA283: LINEAR ALGEBRA SEMESTER 2 2024-25 PRACTICE PROBLEM SHEET 2

Definition Let A be a $m \times n$ matrix. The *transpose* of A, denoted A^T , is the $n \times m$ matrix whose entries are given by $(A^T)_{ij} = A_{ji}$. The entries of the first column of A^T are the entries of the first row of A, the entries of the second column of A^T are the entries of the second row of A, etc.

1. Write down the transpose of each of the following matrices.

$$\begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 4 \\ 2 & 1 & 0 \\ -3 & 4 & 4 \end{bmatrix}, \begin{bmatrix} 5 & -6 & 2 \\ 4 & 0 & 4 \\ 2 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 1 & 5 & 4 \\ 2 & 4 & 10 \end{bmatrix}.$$

- 2. Use elementary row operations to find the inverse of the matrix $\begin{bmatrix} 1 & 4 & -3 \\ -2 & 2 & -4 \\ 3 & 1 & 0 \end{bmatrix}$.
- 3. (Associativity of Matrix Multiplication) Suppose that A, B, C are matrices of sizes $m \times p$, $p \times q$ and $q \times n$ respectively. By considering the entry in the (i,j) position on each side, show that (AB)C = A(BC).
- 4. A square matrix is called *orthogonal* if its inverse is equal to its transpose.
 - (a) Give two examples of 2×2 orthogonal matrices.
 - (b) If A and B are orthogonal matrices of the same size, prove that AB is also orthogonal.
- 5. (a) If A and B are any matrices for which the product AB is defined, show that $(AB)^T = B^T A^T$. (Hint: Write down how the entry in the (i,j) position of $(AB)^T$ depends on the entries of A and B. If you are not sure what to do, try this out for a particular pair of (small) matrices, verify that it is true and try to figure out why.)
 - (b) A square matrix is *symmetric* if it is equal to its own transpose. Verify that for every matrix A, the matrices AA^T and A^TA are square and symmetric. (Hint: use part (a). Try with an example if you are not sure what this is about).
 - (c) Find all 2×2 matrices that are both symmetric and orthogonal.
- 6. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ and $S: \mathbb{R}^2 \to \mathbb{R}^3$ be linear transformations with

$$\mathsf{T}\left(\begin{array}{c}1\\0\\0\end{array}\right)=\left(\begin{array}{c}1\\2\end{array}\right),\,\mathsf{T}\left(\begin{array}{c}0\\1\\0\end{array}\right)=\left(\begin{array}{c}-3\\0\end{array}\right),\,\mathsf{T}\left(\begin{array}{c}0\\0\\1\end{array}\right)=\left(\begin{array}{c}2\\-2\end{array}\right),\,\mathsf{S}\left(\begin{array}{c}1\\0\end{array}\right)=\left(\begin{array}{c}2\\1\\1\end{array}\right),\,\mathsf{S}\left(\begin{array}{c}0\\1\end{array}\right)=\left(\begin{array}{c}-1\\3\\-2\end{array}\right).$$

Write down the matrices of T, S and the compositions $T \circ S$ and $S \circ T$.

- 7. For the linear transformations T and S of Question 7 above, find the image of $\begin{pmatrix} -2 \\ 3 \\ 5 \end{pmatrix}$ under S \circ T.
- 8. For the linear transformation T of Question 7 above, find a non-zero vector $v \in \mathbb{R}^3$ for which $T(v) = \binom{0}{0}$.
- 9. Suppose that $T: \mathbb{R}^n \to R^p$ and $S: R^p \to \mathbb{R}^m$ are linear transformations. Use the defining properties of linear transformations to deduce that $S \circ T: \mathbb{R}^n \to R^m$ is a linear transformation.
- 10. Which of the following are subspaces of the vector space $M_2(\mathbb{R})$ consisting of all 2×2 matrices with real entries?
 - (a) The set of all invertible matrices.
 - (b) The set of all non-invertible matrices.
 - (c) The set consisting only of the zero matrix.

- (d) The set $M_2(\mathbb{Q})$ of all matrices whose entries are rational.
- (e) The set of all matrices whose entry in the (2,1)-position is 0.
- (f) The set of all matrices whose four entries sum to 0.
- (g) The set of all matrices that have at least one entry equal to 0.
- (h) The set of all symmetric matrices (A is symmetric if $A = A^{T}$).
- 11. Which of the following are spanning sets of $M_2(\mathbb{R})$?
 - (a) The set of all invertible matrices.
 - (b) The set of all non-invertible matrices.
 - (c) The set $M_2(\mathbb{Q})$ of all matrices whose entries are rational.
 - (d) The set of all matrices whose entry in the (2,1)-position is 0.
 - (e) The set of all matrices whose entry in the (2,1)-position is 1.
 - (f) The set of all matrices whose four entries sum to 0.
 - (g) The set of all matrices that have at least one entry equal to 0.
- 12. Determine whether or not each of the following is a spanning set of the set P_4 of all polynomials in $\mathbb{R}[x]$ of degree at most 3.

(a)
$$\{x^3 + x^2, x^2 + x, x + 1\}$$

(b)
$$\{x^3 + x^2 + x + 1, x^2 + x + 1, x + 1, 1\}$$

(c)
$$\{x^3 + x^2 + x - 1, x^3 + x^2 - x + 1, x^3 - x^2 + x + 1, -x^3 + x^2 + x + 1\}$$

(d)
$$\{x^3 + x^2 + x - 1, x^3 + x^2 - x + 1, x^3 - x^2 + x + 1, x^3 + x^2\}$$

13. Prove that $\mathbb{R}[x]$ does not have a finite spanning set as a vector space over \mathbb{R} .