Lecture 9: Multiplication and linear transformations

February 17, 2025

- 1 Elementary row operations and factorization
- 2 Elementary Row Operations and matrix multiplication
- 3 Linear Transformations
- 4 Matrix multiplication is composition of functions

Gaussian elimination for inverse calculation

Example
$$A = \begin{bmatrix} 1 & -1 & 1 & 4 \\ 1 & 0 & 2 & 2 \\ 3 & -3 & 4 & 8 \\ 0 & -2 & -2 & 5 \end{bmatrix}$$
. Find A^{-1} .

$$\begin{bmatrix} 1 & -1 & 1 & 4 & | & 1 & 0 & 0 & 0 \\ 1 & 0 & 2 & 2 & | & 0 & 1 & 0 & 0 \\ 3 & -3 & 4 & 8 & | & 0 & 0 & 1 & 0 \\ 0 & -2 & -2 & 5 & | & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & | & 26 & -19 & -2 & -10 \\ 0 & 1 & 0 & 0 & | & 6 & -3 & -1 & -2 \\ 0 & 0 & 1 & 0 & | & -11 & 8 & 1 & 4 \\ 0 & 0 & 0 & 1 & | & -2 & 2 & 0 & 1 \end{bmatrix}$$
Conclusion $A^{-1} = \begin{bmatrix} 26 & -19 & -2 & -10 \\ 6 & -3 & -1 & -2 \\ -11 & 8 & 1 & 4 \\ -2 & 2 & 0 & 1 \end{bmatrix}$. Check this!
If I_n is written in the first n columns of the RREF of $[A|I_n]$, the last n columns comprise A^{-1}

- **1** We were solving four linear systems simultaneously. All four had the same coefficient matrix A, their right hand sides were respectively ae_1 , e_2 , e_3 , e_4 .
- 2 The four leading 1's in the RREF mean that in each system (and any other with coefficient matrix A), there is a unique solution. Those unique solutions are respectively written in the last four columns. So Column 5 of the RREF is the unique column vector vwith $Av = e_1$. This is the first column of A^{-1} .
- If A didn't have an inverse, what would have happened?
 If A has no inverse, at least one of the four systems is inconsistent.
 In the row reduction, we encounter a row with 0 in the first four positions, but not in all the last four.

Let A be (for example) a 4×4 matrix. Applying an elementary row operation (ERO) to A means multiplying A on the left by another matrix.

ERO Type 1 Adding $4 \times$ Row 2 to Row 3 means multiplying A on the left by ERO Type 2 Swapping Rows 2 and 4 means multiplying *A* on the left by

ERO Type 3

Multiplying Row 3 by 5 means multiplying A on the left by

$$E_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 4 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad E_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \qquad E_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

To see this, think about the effect of on the rows of A of left multiplication by E_1 , E_2 , E_3 . Each of these E_i is an elementary matrix.

Gaussian elimination and factorization

When we apply Gaussian elimination to reduce a matrix A to RREF, we are identifying a sequence $E_1, E_2, ..., E_k$ with

$$\mathsf{RREF}(A) = E_k \dots E_2 E_1 A.$$

An $n \times n$ elementary matrix can differ from I_n in one of the following ways

- By having one non-zero entry away from the main diagonal.
- By having one non-zero entry on the main diagonal that is not 1.
- By swapping the columns of two of the 1s in I_n .

Exercise Show that the inverse of an elementary matrix is an elementary matrix.

With this in mind, we can rewrite the above equation as

$$A = E_1^{-1} E_2^{-1} \dots E_k^{-1} RREF(A).$$

Any matrix A can be factorized as A = FB, where F is a product of elementary matrices and B is a RREF. This factorization is very useful in numerical/computational mathematics.

Rachel Quinlan

MA203/283 Lecture 9

Linear transformations are the primary functions between vector spaces that are of interest in linear algebra. They are special because they cooperate with the algebraic structure.

Definition Let *m* and *n* be positive integers. A linear transformation *T* from \mathbb{R}^n to \mathbb{R}^m is a function $T : \mathbb{R}^n \to \mathbb{R}^m$ that satisfies

•
$$T(u + v) = T(u) + T(v)$$
, and

•
$$T(\lambda v) = \lambda T(v)$$
,

for all u and v in \mathbb{R}^n , and all scalars $\lambda \in \mathbb{R}$.

Suppose that $\mathcal{T}:\mathbb{R}^3\to\mathbb{R}^2$ is a linear transformation, with

$$T\begin{bmatrix}1\\0\\0\end{bmatrix} = \begin{bmatrix}2\\-3\end{bmatrix}, \begin{bmatrix}0\\1\\0\end{bmatrix} = \begin{bmatrix}1\\4\end{bmatrix}, T\begin{bmatrix}0\\0\\1\end{bmatrix} = \begin{bmatrix}-6\\7\end{bmatrix}$$

Then for the vector in \mathbb{R}^3 with any entries *a*, *b*, *c*

$$T\begin{bmatrix} a\\b\\c \end{bmatrix} = aT\begin{bmatrix} 1\\0\\0 \end{bmatrix} + bT\begin{bmatrix} 0\\1\\0 \end{bmatrix} + cT\begin{bmatrix} 0\\0\\1 \end{bmatrix} = \underbrace{\begin{bmatrix} 2 & 1 & -6\\-3 & 4 & 7 \end{bmatrix}}_{M_{T}}\begin{bmatrix} a\\b\\c \end{bmatrix}$$

and the 2 \times 3 matrix M_T is called the (standard) matrix of A.

The matrix of a linear transformation

- A linear transformation T : ℝⁿ → ℝ^m is represented by a m × n matrix M_T. The columns of M_T are the images under T of the standard basis vectors e₁,..., e_n.
- If v is any vector in ℝⁿ, we can calculate T(v) by multilpying the column vector v on the left by the matrix M_T. Matrix-vector multiplication is evaluating linear transformations.
- On the other hand, if A is any m×n matrix, then A determines a linear transformation ℝⁿ → ℝ^m by v → Av, for v ∈ ℝⁿ. So, in a sense, matrices are linear transformations.
- Examples of linear transformations include rotations, reflections and scaling, but not translations.
- If T : ℝⁿ → ℝ^m is a linear transformation, then in order to evaluate T at any point/vector, we only need mn pieces of information, just the m coordinates of each of the n images of the standard basis vectors. This is very different for example from continuous functions from ℝ to ℝ we cannot know all about them just by knowing their values at a few points.

Rachel Quinlan

MA203/283 Lecture 9

Matrix multplication is composition

Suppose that $T : \mathbb{R}^n \to \mathbb{R}^p$ and $S : \mathbb{R}^p \to \mathbb{R}^m$ are linear transformations. Then $S \circ T$ (S after T) is the linear transformation from \mathbb{R}^n to \mathbb{R}^m defined for $v \in \mathbb{R}^n$ by

 $S \circ T(v) = S(T(v)).$

Question How does the $(m \times n)$ matrix $M_{S \circ T}$ of $S \circ T$ depend on the $(m \times p)$ matrix M_S of S and the $(p \times n)$ matrix M_T of T? To answer this we have to think about the definition of $M_{S \circ T}$.

- Its first column has the coordinates of $S \circ T(e_1) = S(T(e_1))$.
- $T(e_1)$ is the first column of M_T .
- Then S(T(e₁)) is the matrix-vector product M_S[first column of M_T]. This is the first column of the matrix product M_SM_T.
- Same for all the other columns: the conclusion is $M_{S \circ T} = M_S M_T$.

Matrix multiplication is composition of linear transformations.

Corollary Matrix multiplication is associative.

Rachel Quinlan

MA203/283 Lecture 9