Lecture 11: Subspaces and Spanning Sets

February 25, 2025

Lecture 11: Linear Transformations and Subspaces

1 The kernel and image

2 Subspaces

3 Spanning sets

The Image and Kernel of a Linear Transformation

 $T: \mathbb{R}^3 \to \mathbb{R}^3$ is the linear transformation with $M_T = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 5 \\ 1 & 1 & 1 \end{bmatrix}$.

The image of T is the subset of \mathbb{R}^3 consisting of all elements T(v), where $v \in \mathbb{R}^3$. This is the set of all vectors of the form

$$a\begin{bmatrix}1\\2\\1\end{bmatrix}+b\begin{bmatrix}2\\-1\\1\end{bmatrix}+c\begin{bmatrix}0\\5\\1\end{bmatrix}.$$

In matrix terms, this is the column space of M_T .

The kernel of T is the set of all vectors v in \mathbb{R}^3 with T(v) = 0. This is the set of all column vectors whose entries a, b, c satisfy

$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 5 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = a \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + b \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} + c \begin{bmatrix} 0 \\ 5 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

In matrix terms this is the (right) nullspace of M_T .

Rachel Quinlan

$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 5 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & -1 & 5 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The kernel/nullspace is $\{(-2, 1, 1)t, t \in \mathbb{R}\}\$ a line in \mathbb{R}^3 .

That (-2, 1, 1) is in the kernel of T means that (for example) Column 3 of M_T is a linear combination of Columns 1 and 2.

$$-2\begin{bmatrix}1\\1\\2\\1\end{bmatrix}+1\begin{bmatrix}2\\-1\\1\end{bmatrix}+1\begin{bmatrix}0\\5\\1\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}\Longrightarrow\begin{bmatrix}0\\5\\1\end{bmatrix}=2\begin{bmatrix}1\\2\\1\end{bmatrix}-\begin{bmatrix}2\\-1\\1\end{bmatrix}$$

It follows that every linear combination of all three columns of M_T is actually a linear combination just of Columns 1 and 2.

The column space of M_T is $\begin{cases} 1\\ 2\\ 1\\ 1 \end{cases} + b \begin{bmatrix} 2\\ -1\\ 1\\ 1 \end{bmatrix}$: $a, b \in \mathbb{R}$, a plane in \mathbb{R}^3 . Rachel Quinlan MA203/283 Lecture 11

Subspaces

Definition A (non-empty) subset V of \mathbb{R}^n is a subspace if

- It is closed under addition: $u + v \in V$ whenever $u \in V$ and $v \in V$.
- It is closed under scalar multiplication: $ku \in V$ whenever $u \in V$ and $k \in \mathbb{R}$.

Examples

- 1 $\{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\}$ is not a subspace of \mathbb{R}^3 . The vectors (1, 0, 0) and (0, 1, 0) belong to this set but their sum (1, 1, 0) does not.
- 2 $\{(x, y, z) \in \mathbb{R}^3 : (x, y, z) \cdot (1, 2, 3) = 0\}$ is a subspace of \mathbb{R}^3 .
- 3 $\{(x, y, z) \in \mathbb{R}^3 : (x, y, z) \cdot (1, 2, 3) \neq 0\}$ is not a subspace of \mathbb{R}^3 . For example, (1, 4, 1) and (-5, -2, -1) belong to this set but their sum (-4, 2, 0) does not.
- 4 The kernel of any linear transformation is a subspace.
- 5 The image of any linear transformation is a subspace.
- Exercise Prove these last two points.

Rachel Quinlan

How to make subspaces

Let $S = \{v_1, ..., v_k\}$ be any (finite) subset of \mathbb{R}^n .

The subset of \mathbb{R}^n consisting of all linear combinations of the elements of S is a subspace of \mathbb{R}^n , denoted by $\langle S \rangle$ or $\langle v_1, v_2, \dots, v_k \rangle$ and called the linear span (or just span) of S.

Proof (that $\langle S \rangle$ is a subspace).

Closed under addition: let $u, v \in \langle S \rangle$. Then $u = a_1v_1 + a_2v_2 + \cdots + a_kv_k$, and $v = c_1v_1 + c_2v_2 + \cdots + c_kv_k$, where the a_i and b_i are scalars. We need to show that $u + v \in \langle S \rangle$, which means showing that it is a linear combination of v_1, \ldots, v_k . This is straightforward after everything has been set up, since $u + v = (a_1 + c_1)v_1 + (a_2 + c_2)v_2 + \cdots + (a_k + c_k)v_k$. So S is closed under addition.

Closed under scalar multiplication: let $u \in \langle S \rangle$ and $c \in \mathbb{R}$. We need to show that cu is a linear combination of v_1, \ldots, v_k . We know that $u = a_1v_1 + a_2v_2 + \cdots + a_kv_k$, for scalars a_1, \ldots, a_k . Then $cu = ca_1v_1 + ca_2v_2 + \cdots + ca_kv_k$, so $cu \in \langle S \rangle$.

Rachel Quinlan

Spanning Sets

Let V be a subspace of \mathbb{R}^n (possibly V is all of \mathbb{R}^n). A subset S of V is called a spanning set of V if $\langle S \rangle = V$.

This means that every element of V is a linear combination of the elements of S.

Example The set $\{e_1, e_2, e_3\}$ is a spanning set of \mathbb{R}^3 , where (as usual) $e_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$, $e_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$. This is saying that every

element of \mathbb{R}^3 is a linear combination of e_1 , e_2 , e_3 . For example

$$\begin{bmatrix} 2\\-3\\4 \end{bmatrix} = 2e_1 - 3e_2 + 4e_3.$$

Remark A set S of three column vectors in \mathbb{R}^3 is a spanning set of \mathbb{R}^3 if and only if each of e_1 , e_2 , e_3 is a linear combination of elements of S. This occurs if and only if the 3×3 matrix whose columns are the vectors in S has an *inverse*.

Rachel Quinlan

- **1** Does \mathbb{R}^3 have a spanning set with fewer than three elements?
- 2 Does every spanning set of \mathbb{R}^3 have exactly three elements? **NO** (why not?)
- 3 Does every spanning set of ℝ³ contain one with exactly three elements?
- If V is a subspace of ℝ³, does V have a spanning set with at most three elements?
- **5** If V is a proper subspace of \mathbb{R}^3 (i.e. not all of \mathbb{R}^3) does V have a spanning set with fewer than three elements?

Note A pair of vectors in \mathbb{R}^3 (if they are not scalar multiples of each other) span a plane. Adding a third vector (if it does not lie in this plane) gives a spanning set for all of \mathbb{R}^3 .