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Linear Transformations

Linear transformations are the primary functions between vector spaces
that are of interest in linear algebra. They are special because they
cooperate with the algebraic structure.

Definition Let m and n be positive integers. A linear transformation T
from Rn to Rm is a function T : Rn → Rm that satisfies

T (u + v) = T (u) + T (v), and

T (λv) = λT (v),

for all u and v in Rn, and all scalars λ ∈ R.
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The Matrix of a Linear Transformation

Suppose that T : R3 → R2 is a linear transformation, with

T

 1
0
0

 =

[
2
−3

]
, T

 0
1
0

 =

[
1
4

]
, T

 0
0
1

 =

[
−6

7

]

Then for the vector in R3 with any entries a, b, c

T

 a
b
c

 = aT

 1
0
0

+bT

 0
1
0

+cT

 0
0
1

 =

[
2 1 −6
−3 4 7

]
︸ ︷︷ ︸

MT

 a
b
c

 .

and the 2× 3 matrix MT is called the (standard) matrix of T .
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The matrix of a linear transformation

A linear transformation T : Rn → Rm is represented by a m × n
matrix MT . The columns of MT are the images under T of the
standard basis vectors e1, ... , en.
If v is any vector in Rn, we can calculate T (v) by multiplying the
column vector v on the left by the matrix MT . Matrix-vector
multiplication is evaluating linear transformations.
On the other hand, if A is any m × n matrix, then A determines a
linear transformation Rn → Rm by v → Av , for v ∈ Rn. So, in a
sense, matrices are linear transformations.
Examples of linear transformations include rotations, reflections and
scaling, but not translations.
If T : Rn → Rm is a linear transformation, then in order to evaluate
T at any point/vector, we only need mn pieces of information, just
the m coordinates of each of the n images of the standard basis
vectors. This is very different for example from continuous functions
from R to R - we cannot know all about them just by knowing their
values at a few points.
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Matrix multiplication is composition

Suppose that T : Rn → Rp and S : Rp → Rm are linear transformations.
Then S ◦ T (S after T ) is the linear transformation from Rn to Rm

defined for v ∈ Rn by

S ◦ T (v) = S(T (v)).

Question How does the (m × n) matrix MS◦T of S ◦ T depend on the
(m × p) matrix MS of S and the (p × n) matrix MT of T?
To answer this we have to think about the definition of MS◦T .

Its first column has the coordinates of S ◦ T (e1) = S(T (e1)).

T (e1) is the first column of MT .

Then S(T (e1)) is the matrix-vector product MS [first column of
MT ]. This is the first column of the matrix product MSMT .

Same for all the other columns: the conclusion is MS◦T = MSMT .

Matrix multiplication is composition of linear transformations.

Corollary Matrix multiplication is associative.
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The Image and Kernel of a Linear Transformation

T : R3 → R3 is the linear transformation with MT =

 1 2 0
2 −1 5
1 1 1

.

The image of T is the subset of R3 consisting of all elements T (v),
where v ∈ R3. This is the set of all vectors of the form

a

 1
2
1

+ b

 2
−1

1

+ c

 0
5
1

 .

In matrix terms, this is the column space of MT .

The kernel of T is the set of all vectors v in R3 with T (v) = 0.
This is the set of all column vectors whose entries a, b, c satisfy 1 2 0

2 −1 5
1 1 1

 a
b
c

 = a

 1
2
1

+ b

 2
−1

1

+ c

 0
5
1

 =

 0
0
0

 .

In matrix terms this is the (right) nullspace of MT .
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Example: The kernel is a line and the image is a plane

 1 2 0
2 −1 5
1 1 1

 a
b
c

 =

 0
0
0

⇒
 1 2 0 0

2 −1 5 0
1 1 1 0

→
 1 0 2 0

0 1 −1 0
0 0 0 0


The kernel/nullspace is {(−2, 1, 1)t, t ∈ R} a line in R3.

That (−2, 1, 1) is in the kernel of T means that (for example) Column 3
of MT is a linear combination of Columns 1 and 2.

−2


1

2

1

+1


2

−1

1

+1


0

5

1

=


0

0

0

=⇒


0

5

1

=2


1

2

1

−


2

−1

1



It follows that every linear combination of all three columns of MT is
actually a linear combination just of Columns 1 and 2.

The column space of MT is

a


1

2

1

+b


2

−1

1

: a,b∈R

, a plane in R3.
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Subspaces

Definition A (non-empty) subset V of Rn is a subspace if

It is closed under addition: u + v ∈ V whenever u ∈ V and v ∈ V .

It is closed under scalar multiplication: ku ∈ V whenever u ∈ V and
k ∈ R.

Examples

1 {(x , y , z) ∈ R3 : x + y + z = 1} is not a subspace of R3. The
vectors (1, 0, 0) and (0, 1, 0) belong to this set but their sum
(1, 1, 0) does not.

2 {(x , y , z) ∈ R3 : (x , y , z) · (1, 2, 3) = 0} is a subspace of R3.

3 {(x , y , z) ∈ R3 : (x , y , z) · (1, 2, 3) 6= 0} is not a subspace of R3.
For example, (1, 4, 1) and (−5,−2,−1) belong to this set but their
sum (−4, 2, 0) does not.

4 The kernel of any linear transformation is a subspace.

5 The image of any linear transformation is a subspace.

Exercise Prove these last two points.
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