Lecture 10: Linear Transformations and Subspaces

February 25, 2025

1 Linear Transformations

2 Matrix multiplication is composition of functions

3 The kernel and image

4 Subspaces

Linear transformations are the primary functions between vector spaces that are of interest in linear algebra. They are special because they cooperate with the algebraic structure.

Definition Let *m* and *n* be positive integers. A linear transformation *T* from \mathbb{R}^n to \mathbb{R}^m is a function $T : \mathbb{R}^n \to \mathbb{R}^m$ that satisfies

•
$$T(u + v) = T(u) + T(v)$$
, and

•
$$T(\lambda v) = \lambda T(v)$$
,

for all u and v in \mathbb{R}^n , and all scalars $\lambda \in \mathbb{R}$.

Suppose that $\mathcal{T}:\mathbb{R}^3\to\mathbb{R}^2$ is a linear transformation, with

$$T\begin{bmatrix}1\\0\\0\end{bmatrix} = \begin{bmatrix}2\\-3\end{bmatrix}, T\begin{bmatrix}0\\1\\0\end{bmatrix} = \begin{bmatrix}1\\4\end{bmatrix}, T\begin{bmatrix}0\\0\\1\end{bmatrix} = \begin{bmatrix}-6\\7\end{bmatrix}$$

Then for the vector in \mathbb{R}^3 with any entries *a*, *b*, *c*

$$T\begin{bmatrix}a\\b\\c\end{bmatrix} = aT\begin{bmatrix}1\\0\\0\end{bmatrix} + bT\begin{bmatrix}0\\1\\0\end{bmatrix} + cT\begin{bmatrix}0\\0\\1\end{bmatrix} = \underbrace{\begin{bmatrix}2 & 1 & -6\\-3 & 4 & 7\end{bmatrix}}_{M_{T}}\begin{bmatrix}a\\b\\c\end{bmatrix}$$

and the 2 \times 3 matrix M_T is called the (standard) matrix of T.

The matrix of a linear transformation

- A linear transformation T : ℝⁿ → ℝ^m is represented by a m × n matrix M_T. The columns of M_T are the images under T of the standard basis vectors e₁,..., e_n.
- If v is any vector in Rⁿ, we can calculate T(v) by multiplying the column vector v on the left by the matrix M_T. Matrix-vector multiplication is evaluating linear transformations.
- On the other hand, if A is any m×n matrix, then A determines a linear transformation ℝⁿ → ℝ^m by v → Av, for v ∈ ℝⁿ. So, in a sense, matrices are linear transformations.
- Examples of linear transformations include rotations, reflections and scaling, but not translations.
- If T : ℝⁿ → ℝ^m is a linear transformation, then in order to evaluate T at any point/vector, we only need mn pieces of information, just the m coordinates of each of the n images of the standard basis vectors. This is very different for example from continuous functions from ℝ to ℝ we cannot know all about them just by knowing their values at a few points.

Rachel Quinlan

Matrix multiplication is composition

Suppose that $T : \mathbb{R}^n \to \mathbb{R}^p$ and $S : \mathbb{R}^p \to \mathbb{R}^m$ are linear transformations. Then $S \circ T$ (S after T) is the linear transformation from \mathbb{R}^n to \mathbb{R}^m defined for $v \in \mathbb{R}^n$ by

 $S \circ T(v) = S(T(v)).$

Question How does the $(m \times n)$ matrix $M_{S \circ T}$ of $S \circ T$ depend on the $(m \times p)$ matrix M_S of S and the $(p \times n)$ matrix M_T of T? To answer this we have to think about the definition of $M_{S \circ T}$.

- Its first column has the coordinates of $S \circ T(e_1) = S(T(e_1))$.
- $T(e_1)$ is the first column of M_T .
- Then S(T(e₁)) is the matrix-vector product M_S[first column of M_T]. This is the first column of the matrix product M_SM_T.
- Same for all the other columns: the conclusion is $M_{S \circ T} = M_S M_T$.

Matrix multiplication is composition of linear transformations.

Corollary Matrix multiplication is associative.

Rachel Quinlan

The Image and Kernel of a Linear Transformation

 $T: \mathbb{R}^3 \to \mathbb{R}^3$ is the linear transformation with $M_T = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 5 \\ 1 & 1 & 1 \end{bmatrix}$.

The image of T is the subset of \mathbb{R}^3 consisting of all elements T(v), where $v \in \mathbb{R}^3$. This is the set of all vectors of the form

$$a\begin{bmatrix}1\\2\\1\end{bmatrix}+b\begin{bmatrix}2\\-1\\1\end{bmatrix}+c\begin{bmatrix}0\\5\\1\end{bmatrix}.$$

In matrix terms, this is the column space of M_T .

The kernel of T is the set of all vectors v in \mathbb{R}^3 with T(v) = 0. This is the set of all column vectors whose entries a, b, c satisfy

$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 5 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = a \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + b \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} + c \begin{bmatrix} 0 \\ 5 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

In matrix terms this is the (right) nullspace of M_T .

Rachel Quinlan

$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 5 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & -1 & 5 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The kernel/nullspace is $\{(-2, 1, 1)t, t \in \mathbb{R}\}\$ a line in \mathbb{R}^3 .

That (-2, 1, 1) is in the kernel of T means that (for example) Column 3 of M_T is a linear combination of Columns 1 and 2.

$$-2\begin{bmatrix}1\\2\\1\end{bmatrix}+1\begin{bmatrix}2\\-1\\1\end{bmatrix}+1\begin{bmatrix}0\\5\\1\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}\Longrightarrow\begin{bmatrix}0\\5\\1\end{bmatrix}=2\begin{bmatrix}1\\2\\1\end{bmatrix}-\begin{bmatrix}2\\-1\\1\end{bmatrix}$$

It follows that every linear combination of all three columns of M_T is actually a linear combination just of Columns 1 and 2.

The column space of M_T is $\begin{cases} 1\\ 2\\ 1\\ 1 \end{cases} + b \begin{bmatrix} 2\\ -1\\ 1\\ 1 \end{bmatrix}$: $a, b \in \mathbb{R}$, a plane in \mathbb{R}^3 . Rachel Quinlan MA203/283 Lecture 10

Subspaces

Definition A (non-empty) subset V of \mathbb{R}^n is a subspace if

- It is closed under addition: $u + v \in V$ whenever $u \in V$ and $v \in V$.
- It is closed under scalar multiplication: $ku \in V$ whenever $u \in V$ and $k \in \mathbb{R}$.

Examples

- 1 $\{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\}$ is not a subspace of \mathbb{R}^3 . The vectors (1, 0, 0) and (0, 1, 0) belong to this set but their sum (1, 1, 0) does not.
- 2 $\{(x, y, z) \in \mathbb{R}^3 : (x, y, z) \cdot (1, 2, 3) = 0\}$ is a subspace of \mathbb{R}^3 .
- 3 $\{(x, y, z) \in \mathbb{R}^3 : (x, y, z) \cdot (1, 2, 3) \neq 0\}$ is not a subspace of \mathbb{R}^3 . For example, (1, 4, 1) and (-5, -2, -1) belong to this set but their sum (-4, 2, 0) does not.
- 4 The kernel of any linear transformation is a subspace.
- 5 The image of any linear transformation is a subspace.
- Exercise Prove these last two points.

Rachel Quinlan