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Matrix multiplication is composition

Suppose that T : Rn → Rp and S : Rp → Rm are linear transformations.
Then S ◦ T (S after T ) is the linear transformation from Rn to Rm

defined for v ∈ Rn by

S ◦ T (v) = S(T (v)).

Question How does the (m × n) matrix MS◦T of S ◦ T depend on the
(m × p) matrix MS of S and the (p × n) matrix MT of T?
To answer this we have to think about the definition of MS◦T .

Its first column has the coordinates of S ◦ T (e1) = S(T (e1)).

T (e1) is the first column of MT .

Then S(T (e1)) is the matrix-vector product MS [first column of
MT ]. This is the first column of the matrix product MSMT .

Same for all the other columns: the conclusion is MS◦T = MSMT .

Matrix multiplication is composition of linear transformations.

Corollary Matrix multiplication is associative.
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The Image and Kernel of a Linear Transformation

T : R3 → R3 is the linear transformation with MT =

 1 2 0
2 −1 5
1 1 1

.

The image of T is the subset of R3 consisting of all elements T (v),
where v ∈ R3. This is the set of all vectors of the form

a

 1
2
1

 + b

 2
−1

1

 + c

 0
5
1

 .

In matrix terms, this is the column space of MT .

The kernel of T is the set of all vectors v in R3 with T (v) = 0.
This is the set of all column vectors whose entries a, b, c satisfy 1 2 0

2 −1 5
1 1 1

 a
b
c

 = a

 1
2
1

 + b

 2
−1

1

 + c

 0
5
1

 =

 0
0
0

 .

In matrix terms this is the (right) nullspace of MT .
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Example: The kernel is a line and the image is a plane

 1 2 0
2 −1 5
1 1 1

 a
b
c

 =

 0
0
0

⇒
 1 2 0 0

2 −1 5 0
1 1 1 0

→
 1 0 2 0

0 1 −1 0
0 0 0 0


The kernel/nullspace is {(−2, 1, 1)t, t ∈ R} a line in R3.

That (−2, 1, 1) is in the kernel of T means that (for example) Column 3
of MT is a linear combination of Columns 1 and 2.

−2


1

2

1

+1


2

−1

1

+1


0

5

1

=


0

0

0

=⇒


0

5

1

=2


1

2

1

−


2

−1

1



It follows that every linear combination of all three columns of MT is
actually a linear combination just of Columns 1 and 2.

The column space of MT is

a


1

2

1

+b


2

−1

1

: a,b∈R

, a plane in R3.
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Subspaces

Definition A (non-empty) subset V of Rn is a subspace if

It is closed under addition: u + v ∈ V whenever u ∈ V and v ∈ V .

It is closed under scalar multiplication: ku ∈ V whenever u ∈ V and
k ∈ R.

Examples

1 {(x , y , z) ∈ R3 : x + y + z = 1} is not a subspace of R3. The
vectors (1, 0, 0) and (0, 1, 0) belong to this set but their sum
(1, 1, 0) does not.

2 {(x , y , z) ∈ R3 : (x , y , z) · (1, 2, 3) = 0} is a subspace of R3.

3 {(x , y , z) ∈ R3 : (x , y , z) · (1, 2, 3) 6= 0} is not a subspace of R3.
For example, (1, 4, 1) and (−5,−2,−1) belong to this set but their
sum (−4, 2, 0) does not.

4 The kernel of any linear transformation is a subspace.

5 The image of any linear transformation is a subspace.

Exercise Prove these last two points.
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How to make subspaces

Let S = {v1, ... , vk} be any (finite) subset of Rn.

The subset of Rn consisting of all linear combinations of
the elements of S is a subspace of Rn, denoted by 〈S〉 or
〈v1, v2, ... , vk〉 and called the linear span (or just span) of S .

Proof (that 〈S〉 is a subspace).
Closed under addition: let u, v ∈ 〈S〉. Then u = a1v1 + a2v2 + · · ·+ akvk ,
and v = c1v1 + c2v2 + · · ·+ ckvk , where the ai and bi are scalars. We
need to show that u + v ∈ 〈S〉, which means showing that it is a linear
combination of v1, ... , vk . This is straightforward after everything has
been set up, since u + v = (a1 + c1)v1 + (a2 + c2)v2 + · · ·+ (ak + ck)vk .
So S is closed under addition.

Closed under scalar multiplication: let u ∈ 〈S〉 and c ∈ R. We need to
show that cu is a linear combination of v1, ... , vk . We know that
u = a1v1 + a2v2 + · · ·+ akvk , for scalars a1, ... , ak . Then
cu = ca1 v1 + ca2 v2 + · · ·+ cak vk , so cu ∈ 〈S〉.
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Spanning Sets

Let V be a subspace of Rn (possibly V is all of Rn). A subset S of V is
called a spanning set of V if 〈S〉 = V .
This means that every element of V is a linear combination of the
elements of S .
Example The set {e1, e2, e3} is a spanning set of R3, where (as usual)

e1 =

 1
0
0

 , e2 =

 0
1
0

 , e3 =

 0
0
1

. This is saying that every

element of R3 is a linear combination of e1, e2, e3. For example 2
−3

4

 = 2e1 − 3e2 + 4e3.

Remark A set S of three column vectors in R3 is a spanning set of R3 if
and only if each of e1, e2, e3 is a linear combination of elements of S .
This occurs if and only if the 3× 3 matrix whose columns are the vectors
in S has an inverse.
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Questions about Spanning Sets

1 Does R3 have a spanning set with fewer than three elements?

2 Does every spanning set of R3 have exactly three elements?
NO (why not?)

3 Does every spanning set of R3 contain one with exactly three
elements?

4 If V is a subspace of R3, does V have a spanning set with at most
three elements?

5 If V is a proper subspace of R3 (i.e. not all of R3) does V have a
spanning set with fewer than three elements?

Note A pair of vectors in R3 (if they are not scalar multiples of each
other) span a plane. Adding a third vector (if it does not lie in this
plane) gives a spanning set for all of R3.
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