Section 1.4 Techniques of Integration

To calculate

$$\int_{a}^{b} f(x) dx$$

- 1 Find a function F for which F'(x) = f(x), i.e. find a function F whose derivative is f.
- Evaluate F at the limits of integration a and b; i.e. calcuate F(a) and F(b). This means replacing x separately with a and b in the formula that defines F(x).
- Calculate the number F(b) F(a). This is the definite integral $\int_a^b f(x) dx.$

Of the three steps above, the first one is the hard one.

Notation

Recall the following notation : if F is a function that satisfies F'(x) = f(x), then

$$F(x)|_a^b$$
 or $F(x)|_{x=a}^{x=b}$ means $F(b) - F(a)$.

Definition 14

Let f be a function. Another function F is called an antiderivative of f if the derivative of F is f, i.e. if F'(x) = f(x), for all (relevant) values of the variable x.

So for example x^2 is an antiderivative of 2x. Note that $x^2 + 1$, $x^2 + 5$ and $x^2 - 20e$ are also antiderivatives of 2x. So we talk about an antiderviative of a function or expression rather that the antiderivative.

The Indefinite Integral

Definition 15

Let f be a function. The indefinite integral of f, written

$$\int f(x) \, dx$$

is the "general antiderivative" of f. If F(x) is a particular antiderivative of f, then we would write

$$\int f(x) dx = F(x) + C,$$

to indicate that the different antiderivatives of f look like F(x) + C, where C may be any constant. (In this context C is often referred to as a constant of integration).

Examples

Example 16

Determine $\int \cos 2x \, dx$.

Solution: The question is: what do we need to differentiate to get $\cos 2x$? Well, what do we need to differentiate to get something involving \cos ?

Examples

Example 16

Determine $\int \cos 2x \, dx$.

Solution: The question is: what do we need to differentiate to get $\cos 2x$? Well, what do we need to differentiate to get something involving \cos ? The derivative of $\sin x$ is $\cos x$. A reasonable guess would say that the derivative of $\sin 2x$ might be "something like" $\cos 2x$.

Examples

Example 16

Determine
$$\int \cos 2x \, dx$$
.

Solution: The question is: what do we need to differentiate to get $\cos 2x$? Well, what do we need to differentiate to get something involving \cos ? The derivative of $\sin x$ is $\cos x$. A reasonable guess would say that the derivative of $\sin 2x$ might be "something like" $\cos 2x$.

By the chain rule, the derivative of $\sin 2x$ is in fact $2\cos 2x$.

So $\sin 2x$ is pretty close but it gives us twice what we want - we should compensate for this by taking $\frac{1}{2}\sin 2x$; its derivative is

$$\frac{1}{2}(2\cos 2x) = \cos 2x.$$

Conclusion:
$$\int \cos 2x \, dx = \frac{1}{2} \sin 2x + C$$

Powers of *x*

Example 17

Determine
$$\int x^n dx$$

Important Note: We know that in order to calculate the derivative of an expression like x^n , we reduce the index by 1 to n-1, and we multiply by the constant n. So

$$\frac{d}{dx}x^n = nx^{n-1}$$

in general. To find an antiderivative of x^n we have to reverse this process. This means that the index increases by 1 to n+1 and we multiply by the constant $\frac{1}{n+1}$. So

$$\int x^n dx = \frac{1}{n+1}x^{n+1} + C.$$

This makes sense as long as the number n is not equal to -1 (in which case the fraction $\frac{1}{n+1}$ wouldn't be defined).

The Integral of $\frac{1}{x}$

Suppose that x > 0 and $y = \ln x$. Recall this means (by definition) that $e^y = x$. Differentiating both sides of this equation (with respect to x) gives

$$e^{y}\frac{dy}{dx} = 1 \Longrightarrow \frac{dy}{dx} = \frac{1}{e^{y}} = \frac{1}{x}.$$

Thus the derivative of $\ln x$ is $\frac{1}{x}$, and

$$\int \frac{1}{x} dx = \ln x + C, \text{ for } x > 0.$$

If x < 0, then

$$\int \frac{1}{x} dx = \ln|x| + C.$$

This latter formula applies for all $x \neq 0$.

A definite integral

Example 18

Determine
$$\int_0^{\pi} \sin x + \cos x \, dx$$
.

Solution: We need to write down *any* antiderivative of $\sin x + \cos x$ and evaluate it at the limits of integration :

$$\int_0^{\pi} \sin x + \cos x \, dx = -\cos x + \sin x \Big|_0^{\pi}$$

$$= (-\cos \pi + \sin \pi) - (-\cos 0 + \sin 0)$$

$$= -(-1) + 0 - (-1 + 0) = 2.$$

A definite integral

Example 18

Determine
$$\int_0^{\pi} \sin x + \cos x \, dx$$
.

Solution: We need to write down any antiderivative of $\sin x + \cos x$ and evaluate it at the limits of integration :

$$\int_0^{\pi} \sin x + \cos x \, dx = -\cos x + \sin x \Big|_0^{\pi}$$

$$= (-\cos \pi + \sin \pi) - (-\cos 0 + \sin 0)$$

$$= -(-1) + 0 - (-1 + 0) = 2.$$

Note: To determine $\cos \pi$, start at the point (1,0) and travel counter-clockwise along the unit circle for a distance of π , arriving at the point (-1,0). The x-coordinate of the point you are at now is $\cos \pi$, and the y-coordinate is $\sin \pi$.

1.4.1 Substitution - Reversing the Chain Rule

The Chain Rule of Differentiation tells us that in order to differentiate the expression $\sin x^2$, we should regard this expression as $\sin(\text{"something"})$ whose derivative (with respect to "something") is $\cos(\text{"something"})$, then multiply this expression by the derivative of the "something" with respect to x. Thus

$$\frac{d}{dx}(\sin x^2) = \cos x^2 \frac{d}{dx}(x^2) = 2x \cos x^2.$$

1.4.1 Substitution - Reversing the Chain Rule

The Chain Rule of Differentiation tells us that in order to differentiate the expression $\sin x^2$, we should regard this expression as $\sin(\text{"something"})$ whose derivative (with respect to "something") is $\cos(\text{"something"})$, then multiply this expression by the derivative of the "something" with respect to x. Thus

$$\frac{d}{dx}(\sin x^2) = \cos x^2 \frac{d}{dx}(x^2) = 2x \cos x^2.$$

Equivalently

$$\int 2x\cos x^2\,dx = \sin x^2 + C.$$

In this section, through a series of examples, we consider how one might go about reversing the differentiation process to get from $2x \cos x^2$ back to $\sin x^2$.

How Substitution Works

Example 19

Determine $\int 2x\sqrt{x^2+1} dx$.

Solution Notice that the integrand involves both the expressions $x^2 + 1$ and 2x. Note also that 2x is the derivative of $x^2 + 1$.

- 1 Introduce the notation u and set $u = x^2 + 1$.
- Note $\frac{du}{dx} = 2x$; rewrite this as du = 2x dx.
- 3 Then

$$\int 2x\sqrt{x^2+1}\,dx = \int \sqrt{x^2+1}(2x\,dx) = \int u^{\frac{1}{2}}\,du = \frac{2}{3}u^{\frac{3}{2}} + C.$$

4 So

$$\int 2x\sqrt{x^2+1}\,dx = \frac{2}{3}(x^2+1)^{\frac{3}{2}} + C.$$

Substitution and definite integrals

Example 20

Determine
$$\int_0^{\pi} \cos^3 x \sin x \, dx$$
 (from 2015 Summer paper)

Solution: Write $u = \cos x$. Then

$$\frac{du}{dx} = -\sin x, \ du = -\sin x \, dx, \ \sin x \, dx = -du.$$

Change variables: $\int_0^{\pi} \cos^3 x \sin x \, dx = - \int_{x=0}^{x=\pi} u^3 \, du$. Limits of integration: When x=0, $u=\cos x=\cos 0=1$. When $x=\pi$, $u=\cos x=\cos \pi=-1$. Our integral becomes:

$$\int_{u=1}^{u=-1} u^3 du = \left. \frac{u^4}{4} \right|_{u=-1}^{u=1} = \frac{1}{4} - \frac{(-1)^4}{4} = 0.$$

Substitution and Definite Integrals - more examples

Example 21

Evaluate
$$\int_0^1 \frac{5r}{(4+r^2)^2} dr.$$

Solution To find an antiderivative, let
$$u = 4 + r^2$$
.
Then $\frac{du}{dr} = 2r$, $du = 2r dr$; $5r dr = \frac{5}{2} du$.

$$\int \frac{5r}{(4+r^2)^2} dr = \frac{5}{2} \int \frac{1}{u^2} du = \frac{5}{2} \int u^{-2} du.$$

Thus

$$\int \frac{5r}{(4+r^2)^2} dr = -\frac{5}{2} \times \frac{1}{u} + C,$$

and we need to evaluate $-\frac{5}{2} \times \frac{1}{n}$ at r=0 and at r=1. We have two choices.

Two Choices

11 Write $u = 4 + r^2$ to obtain

$$\int_{0}^{1} \frac{5r}{(4+r^{2})^{2}} dr = -\frac{5}{2} \times \frac{1}{4+r^{2}} \Big|_{r=0}^{r=1}$$

$$= -\frac{5}{2} \times \frac{1}{4+1^{2}} - \left(-\frac{5}{2} \times \frac{1}{4+0^{2}}\right)$$

$$= -\frac{5}{2} \times \frac{1}{5} + \frac{5}{2} \times \frac{1}{4}$$

$$= \frac{1}{8}.$$

. . . Alternatively

2. Alternatively, write the antiderivative as $-\frac{5}{2} \times \frac{1}{u}$ and replace the limits of integration with the corresponding values of u.

When
$$r = 0$$
 we have $u = 4 + 0^2 = 4$.

When
$$r = 1$$
 we have $u = 4 + 1^2 = 5$.

Thus

$$\int_{0}^{1} \frac{5r}{(4+r^{2})^{2}} dr = -\frac{5}{2} \times \frac{1}{u} \Big|_{u=4}^{u=5}$$

$$= -\frac{5}{2} \times \frac{1}{5} - \left(-\frac{5}{2} \times \frac{1}{4}\right)$$

$$= \frac{1}{8}.$$

From Summer Exam 2013

Example 22

Determine

$$\int_1^4 \frac{1}{x + \sqrt{x}} \, dx.$$

Solution: Write

$$\int_{1}^{4} \frac{1}{x + \sqrt{x}} dx = \int_{1}^{4} \frac{1}{\sqrt{x}(\sqrt{x} + 1)} dx.$$

Now write $u = \sqrt{x} + 1$. Then $\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2}\frac{1}{\sqrt{x}} \Longrightarrow \frac{1}{\sqrt{x}} dx = 2du$.

Then

$$\int_{1}^{4} \frac{1}{\sqrt{x}(\sqrt{x}+1)} dx = \int_{x=1}^{x=4} \frac{2}{u} du = \int_{u=2}^{u=3} \frac{2}{u} du = 2 \ln u \Big|_{2}^{3}$$
$$= 2(\ln 3 - \ln 2) = 2 \ln \frac{3}{2}.$$

More Examples

Example 23

Determine
$$\int (1-\cos t)^2 \sin t \, dt$$

More Examples

Example 23

Determine
$$\int (1-\cos t)^2 \sin t \, dt$$

Question: How do we know what expression to extract and refer to as u? Really what we are doing in this process is changing the integration problem in the variable t to a (hopefully easier) integration problem in a new variable u - there is a change of variables taking place.

More Examples

Example 23

Determine
$$\int (1-\cos t)^2 \sin t \, dt$$

Question: How do we know what expression to extract and refer to as u? Really what we are doing in this process is changing the integration problem in the variable t to a (hopefully easier) integration problem in a new variable u - there is a change of variables taking place.

There is no easy answer but with practice we can develop a sense of what might work. In this example the integrand involves the expression $1 - \cos t$ and also its derivative $\sin t$. This is what makes the substitution $u = 1 - \cos t$ effective for this problem.

NOTE: There are more examples of the substitution technique in the lecture notes.