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Chapter 1

Preview: what is linear algebra
about?

1.1 The setup: vector spaces

This module is an introduction to the theory, methods, practices and applications of linear algebra.
Like many other areas of mathematics, linear algebra is concerned with mathematical objects that
have some properties in common, and with some functions between them that have some sort
of good behaviour with respect to the properties that we are interested in. This is a fairly vague
description of a way of organizing ideas that is very prominent throughout mathematics. It can
be expressed in more detail within certain frameworks. For example, in calculus, we are generally
interested in functions from (subsets of) R to R - that’s what the subject deals with. We are not
really interested in all such functions, but maybe in the continuous functions or the differentiable
ones, basically those functions that are amenable to study via the objects and themes of calculus.

In linear algebra, the environments that we work in are called vector spaces, and the main (but
not only) functions of interest are called linear transformations. The entire setup is closely linked to
the algebra of matrices. The subject and its methods have extraordinary prevalence, importance
and applicability in every area of the mathematical sciences. For example, linear algebra allows
for a translation of many problems of geometry into a concrete or computational setting, thanks
to the innovation of coordinate geometry in or before the 17th century. Because linear algebra
is relatively well understood and well suited to computer implementations, methods for solving
complex problems that cannot be handled analytically often involve a reduction to or approxima-
tion by a problem of linear algebra. Linear algebra is central to the study of statistics, particularly
in any situation where multiple random variables need to be considered simultaneously. A ro-
bust knowledge of the basic principles and methods of linear algebra, which we will study in this
course, is essential for the study of virtually every area of mathematics and its applications (fur-
ther examples include analysis, abstract algebra, combinatorics, theoretical physics, the theory of
graphs and networks and mathematical modelling in general). Despite its position as part of the
basic fabric of mathematics, linear algebra also continues to be a subject of research activity in its
own right. The University of Galway hosted the conference of the International Linear Algebra
Society in 2022.

1.2 Systems of Linear Equations

Consider the equation
2x+ y = 3.

This is an example of a linear equation in the variables x and y. As it stands, the statement “2x +
y = 3” is neither true nor untrue : it is just a statement involving the abstract symbols x and
y. However if we replace x and y with some particular pair of real numbers, the statement will
become either true or false. For example
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Putting x = 1, y = 1 gives 2x+ y = 2(1) + (1) = 3 : True
x = 1, y = 2 gives 2x+ y = 2(1) + (2) �= 3 : False
x = 0, y = 3 gives 2x+ y = 2(0) + (3) = 3 : True

Definition 1.2.1. A pair (x0,y0) of real numbers is a solution to the equation 2x+y = 3 if setting x = x0
and y = y0 makes the equation true; i,.e. if 2x0 + y0 = 3.

For example (1, 1) and (0, 3) are solutions - so are (2,−1), (3,−3), (−1, 5) and (−1/2, 4) (check
these).

However (1, 4) is not a solution since setting x = 1, y = 4 gives 2x+ y = 2(1) + 4 �= 3.
The set of all solutions to the equation is called its solution set. In tis example, the solution set

is a line in R2. In general, the solution set of the linear equation

a1X1 + · · ·+ anXn = b,

where b and the ai are real numbers (and the ai are not all zero) is an affine hyperplane in Rn;
geometrically it resembles a copy of Rn−1 inside Rn.

A collection of linear equations in the same n variables is referred to as a linear system or
system of linear equations. The solution set of the system is the subset of Rn consisting of those
elements that satify all of the equations in the system; it is the intersection of the solution sets of
the individual equations. For small systems in few variables, like the one below, the solution set
can be easily computed.

Example 1.2.2. Solve the linear system

2x + y = 3 (A)
4x + 3y = 4 (B)

�

Step 1: Multiply Equation (A) by 2 : 4x+ 2y = 6 (A2).
Any solution of (A2) is a solution of (A).

Step 2: Multiply Equation (B) by −1 : −4x− 3y = −4 (B2)
Any solution of (B2) is a solution of (B).

Step 3: Now add equations (A2) and (B2).

4x + 2y = 6
−4x − 3y = −4

−y = 2

Step 4: So y = −2 and the value of y in any simultaneous solution of (A) and (B) is −2 : Now we
can use (A) to find the value of x.

2x+ y = 3 and y = −2 =⇒ 2x+ (−2) = 3
=⇒ 2x = 5

=⇒ x =
5
2

So x = 5/2, y = −2 is the unique solution to this system of linear equations.
No surprises there, but this kind of “ad hoc” approach may not be so easy if we have a more

complicated system, involving a greater number of variables, or more equations. We will devise a
systematic approach, known as Gauss-Jordan elimination, for solving systems of linear equations.

1.2.1 Elementary Row Operations

Example 1.2.3. Find all solutions of the following system :

x + 2y − z = 5
3x + y − 2z = 9
−x + 4y + 2z = 0
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In other (perhaps simpler) examples we were able to find solutions by simplifying the system
(perhaps by eliminating certain variables) through operations of the following types :

1. We could multiply one equation by a non-zero constant.

2. We could add one equation to another (for example in the hope of eliminating a variable
from the result).

A similar approach will work for Example 1.2.3 but with this and other harder examples it
may not always be clear how to proceed. We now develop a new technique both for describing
our system and for applying operations of the above types more systematically and with greater
clarity.

Back to Example 1.2.3: We associate a matrix to our system of equations.

x + 2y − z = 5
3x + y − 2z = 9
−x + 4y + 2z = 0




1 2 −1 5
3 1 −2 9

−1 4 2 0




Equation 1
Equation 2
Equation 3

Note that the first row of this matrix contains as its four entries the coefficients of the variables
x,y, z, and the number appearing on the right-hand-side of Equation 1 of the system. Rows 2 and
3 correspond similarly to Equations 2 and 3. The columns of the matrix correspond (from left to
right) to the variables x, y, z and the right hand side of our system of equations.

Definition 1.2.4. The above matrix is called the augmented matrix of the system of equations in Example
1.2.3.

In solving systems of equations we are allowed to perform operations of the following types:

1. Multiply an equation by a non-zero constant.

2. Add one equation (or a non-zero constant multiple of one equation) to another equation.

These correspond to the following operations on the augmented matrix :

1. Multiply a row by a non-zero constant.

2. Add a multiple of one row to another row.

3. We also allow operations of the following type : Interchange two rows in the matrix (this
only amounts to writing down the equations of the system in a different order).

Definition 1.2.5. Operations of these three types are called Elementary Row Operations (ERO’s) on a
matrix.

We now describe how ERO’s on the augmented matrix can be used to solve the system of
Example 1.2.3. The following table describes how an ERO is performed at each step to produce a
new augmented matrix corresponding to a new (hopefully simpler) system.

4



ERO Matrix System




1 2 −1 5
3 1 −2 9

−1 4 2 0




x + 2y − z = 5
3x + y − 2z = 9
−x + 4y + 2z = 0

1. R3 → R3 + R1




1 2 −1 5
3 1 −2 9
0 6 1 5




x + 2y − z = 5
3x + y − 2z = 9

6y + z = 5

2. R2 → R2 − 3R1




1 2 −1 5
0 −5 1 −6
0 6 1 5




x + 2y − z = 5
− 5y + z = −6

6y + z = 5

3. R2 → R2 + R3




1 2 −1 5
0 1 2 −1
0 6 1 5




x + 2y − z = 5
y + 2z = −1

6y + z = 5

4. R3 → R3 − 6R2




1 2 −1 5
0 1 2 −1
0 0 −11 11




x + 2y − z = 5
y + 2z = −1

−11z = 11

5. R3 ×
�
− 1

11

�



1 2 −1 5
0 1 2 −1
0 0 1 −1




x + 2y − z = 5 (A)
y + 2z = −1 (B)

z = −1 (C)

We have produced a new system of equations. This is easily solved :

Backsubstitution





(C) z = −1
(B) y = −1 − 2z =⇒ y = −1 − 2(−1) = 1
(A) x = 5 − 2y+ z =⇒ x = 5 − 2(1) + (−1) = 2

Solution : x = 2, y = 1, z = −1
You should check that this is a solution of the original system. It is the only solution both of the
final system and of the original one (and every intermediate one).
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NOTE : The matrix obtained in Step 5 above is in Row-Echelon Form. This means :

1. The first non-zero entry in each row is a 1 (called a Leading 1).

2. If a column contains a leading 1, then every entry of the column below the leading 1 is a
zero.

3. As we move downwards through the rows of the matrix, the leading 1’s move from left to
right.

4. Any rows consisting entirely of zeroes are grouped together at the bottom of the matrix.

NOTE : The process by which the augmented matrix of a system of equations is reduced to row-
echelon form is called Gaussian Elimination. In Example 1.2.3 the solution of the system was found
by Gaussian elimination with Backsubstitution.

General Strategy to Obtain a Row-Echelon Form

1. Get a 1 as the top left entry of the matrix.

2. Use this first leading 1 to “clear out” the rest of the first column, by adding suitable multiples
of Row 1 to subsequent rows.

3. If column 2 contains non-zero entries (other than in the first row), use ERO’s to get a 1 as
the second entry of Row 2. After this step the matrix will look like the following (where the
entries represented by stars may be anything):




1 ∗ ∗ . . . . . .
0 1 . . . . . . . . .
0 ∗ . . . . . . . . .
0 ∗ . . . . . . . . .
...

...
...

0 ∗ . . . . . . . . .




4. Now use this second leading 1 to “clear out” the rest of column 2 (below Row 2) by adding
suitable multiples of Row 2 to subsequent rows. After this step the matrix will look like the
following : 



1 ∗ ∗ . . . . . .
0 1 ∗ . . . . . .
0 0 ∗ . . . . . .
0 0 ∗ . . . . . .
...

...
...

...
...

0 0 ∗ . . . . . .




5. Now go to column 3. If it has non-zero entries (other than in the first two rows) get a 1 as the
third entry of Row 3. Use this third leading 1 to clear out the rest of Column 3, then proceed
to column 4. Continue until a row-echelon form is obtained.

Example 1.2.6. Let A be the matrix



1 −1 −1 2 0
2 1 −1 2 8
1 −3 2 7 2




Reduce A to row-echelon form.

Solution:
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1. Get a 1 as the first entry of Row 1. Done.

2. Use this first leading 1 to clear out column 1 as follows :

R2 → R2 − 2R1
R3 → R3 − R1




1 −1 −1 2 0
0 3 1 −2 8
0 −2 3 5 2




3. Get a leading 1 as the second entry of Row 2, for example as follows :

R2 → R2 + R3




1 −1 −1 2 0
0 1 4 3 10
0 −2 3 5 2




4. Use this leading 1 to clear out whatever appears below it in Column 2 :

R3 → R3 + 2R2




1 −1 −1 2 0
0 1 4 3 10
0 0 11 11 22




5. Get a leading 1 in Row 3 :

R3 × 1
11




1 −1 −1 2 0
0 1 4 3 10
0 0 1 1 2




This matrix is now in row-echelon form.
Remark Starting with a particular matrix, different sequences of ERO’s can lead to different row-
echelon forms. However, all have the same number of non-zero rows.

1.2.2 The Reduced Row-Echelon Form (RREF)

Definition 1.2.7. A matrix is in reduced row-echelon form (RREF) if

1. It is in row-echelon form, and

2. If a particular column contains a leading 1, then all other entries of that column are zeroes.

If we have a row-echelon form, we can use ERO’s to obtain a reduced row-echelon form (using
ERO’s to obtain a RREF is called Gauss-Jordan elimination).

Example 1.2.8. In Example 1.2.6, we obtained the following row-echelon form :




1 −1 −1 2 0
0 1 4 3 10
0 0 1 1 2


 (REF, not reduced REF)

To get a RREF from this REF :

1. Look for the leading 1 in Row 2 - it is in column 2. Eliminate the non-zero entry above this
leading 1 by adding a suitable multiple of Row 2 to Row 1.

R1 → R1 + R2




1 0 3 5 10
0 1 4 3 10
0 0 1 1 2




2. Look for the leading 1 in Row 3 - it is in column 3. Eliminate the non-zero entries above this
leading 1 by adding suitable multiples of Row 3 to Rows 1 and 2.

R1 → R1 − 3R3
R2 → R2 − 4R3




1 0 0 2 4
0 1 0 −1 2
0 0 1 1 2



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This matrix is in reduced row-echelon form. The technique outlined in this example will work in
general to obtain a RREF from a REF: you should practise with similar examples.
Remark: Different sequences of ERO’s on a matrix can lead to different row-echelon forms. How-
ever, the reduced row-echelon form of any matrix is unique.

1.2.3 Leading Variables and Free Variables

Example 1.2.9. Find the general solution of the following system :

x1 − x2 − x3 + 2x4 = 0 I
2x1 + x2 − x3 + 2x4 = 8 II
x1 − 3x2 + 2x3 + 7x4 = 2 III

SOLUTION :

1. Write down the augmented matrix of the system :

Eqn I
Eqn II
Eqn III




1 −1 −1 2 0
2 1 −1 2 8
1 −3 2 7 2




x1 x2 x3 x4

Note : This is the matrix of Example 1.2.6

2. Use Gauss-Jordan elimination to find a reduced row-echelon form from this augmented
matrix. We have already done this in Examples 1.2.6 and 1.2.8 :-

RREF :




1 0 0 2 4
0 1 0 −1 2
0 0 1 1 2




x1 x2 x3 x4

This matrix corresponds to a new system of equations:

x1 + 2x4 = 4 (A)
x2 − x4 = 2 (B)
x3 + x4 = 2 (C)

Remark : The RREF involves 3 leading 1’s, one in each of the columns corresponding to the
variables x1, x2 and x3. The column corresponding to x4 contains no leading 1.

Definition 1.2.10. The variables whose columns in the RREF contain leading 1’s are called leading
variables. A variable whose column in the RREF does not contain a leading 1 is called a free
variable.

So in this example the leading variables are x1, x2 and x3, and the variable x4 is free. What
does this distinction mean in terms of solutions of the system? The system corresponding
to the RREF can be rewritten as follows :

x1 = 4 − 2x4 (A)
x2 = 2 + x4 (B)
x3 = 2 − x4 (C)

i.e. this RREF tells us how the values of the leading variables x1, x2 and x3 depend on that
of the free variable x4 in a solution of the system. In a solution, the free variable x4 may
assume the value of any real number. However, once a value for x4 is chosen, values are
immediately assigned to x1, x2 and x3 by equations A, B and C above. For example
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(a) Choosing x4 = 0 gives x1 = 4− 2(0) = 4, x2 = 2+ (0) = 2, x3 = 2− (0) = 2. Check that
x1 = 4, x2 = 2, x3 = 2, x4 = 0 is a solution of the (original) system.

(b) Choosing x4 = 3 gives x1 = 4 − 2(3) = −2, x2 = 2 + (3) = 5, x3 = 2 − (3) = −1. Check
that x1 = −2, x2 = 5, x3 = −1, x4 = 3 is a solution of the (original) system.

Different choices of value for x4 will give different solutions of the system. The number of
solutions is infinite.

The general solution is usually described by the following type of notation. We assign the
parameter name t to the value of the variable x4 in a solution (so t may assume any real
number as its value). We then have

x1 = 4 − 2t, x2 = 2 + t, x3 = 2 − t, x4 = t; t ∈ R

or

General Solution : (x1, x2, x3, x4) = (4 − 2t, 2 + t, 2 − t, t); t ∈ R

This general solution describes the infinitely many solutions of the system : we get a partic-
ular solution by choosing a specific numerical value for t : this determines specific values
for x1, x2, x3 and x4.

Example 1.2.11. Solve the following system of linear equations :

x1 − x2 − x3 + 2x4 = 0 I
2x1 + x2 − x3 + 2x4 = 8 II
x1 − 3x2 + 2x3 + 7x4 = 2 III
x1 − x2 + x3 − x4 = −6 IV

Remark : The first three equations of this system comprise the system of equations of Example
1.2.9. The problem becomes : Can we find a solution of the system of Example 1.2.9 which is in
addition a solution of the equation x1 − x2 + x3 − x4 = −6 ?

SOLUTION We know that every simultaneous solution of the first three equations has the form

x1 = 4 − 2t, x2 = 2 + t, x3 = 2 − t, x4 = t,

where t can be any real number . Is there some choice of t for which the solution of the first three
equations is also a solution of the fourth? i.e. for which

x1 − x2 + x3 − x4 = −6 i.e. (4 − 2t)− (2 + t) + (2 − t)− t = −6

Solving for t gives

4 − 5t = −6
=⇒ −5t = 10

=⇒ t = 2

t = 2 : x1 = 4 − 2t = 4 − 2(2) = 0; x2 = 2 + t = 2 + 2 = 4; x3 = 2 − t = 2 − 2 = 0; x4 = t = 2

SOLUTION : x1 = 0, x2 = 4, x3 = 0, x4 = 2 (or (x1, x2, x3, x4) = (0, 4, 0, 2)).
This is the unique solution to the system in Example 1.2.11.

REMARKS:

1. To solve the system of Example 1.2.11 directly (without 1.2.9) we would write down the
augmented matrix : 



1 −1 −1 2 0
2 1 −1 2 8
1 −3 2 7 2
1 −1 1 −1 −6



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Check: Gauss-Jordan elimination gives the reduced row-echelon form :



1 0 0 0 0
0 1 0 0 4
0 0 1 0 0
0 0 0 1 2




which corresponds to the system

x1 = 0; x2 = 4; x3 = 0; x4 = 2

i.e. the unique solution is given exactly by the RREF. In this system, all four variables are
leading variables. This is always the case for a system which has a unique solution : that
each variable is a leading variable, i.e. corresponds in the RREF of the augmented matrix to
a column which contains a leading 1.

2. The system of Example 1.2.9, consisting of Equations 1,2 and 3 of that in Example 1.2.11, had
an infinite number of solutions. Adding the fourth equation in Example 1.2.11 pinpointed
exactly one of these infinitely many solutions.

1.2.4 Consistent and Inconsistent Systems

Example 1.2.12. Consider the following system :

3x + 2y − 5z = 4
x + y − 2z = 1

5x + 3y − 8z = 6

To find solutions, obtain a row-echelon form from the augmented matrix :



3 2 −5 4
1 1 −2 1
5 3 −8 6


 R1 ↔ R2

−→




1 1 −2 1
3 2 −5 4
5 3 −8 6




R2 → R2 − 3R1
−→

R3 → R3 − 5R1




1 1 −2 1
0 −1 1 1
0 −2 2 1


 R2 × (−1)

−→




1 1 −2 1
0 1 −1 −1
0 −2 2 1




R3 → R3 + 2R2
−→




1 1 −2 1
0 1 −1 −1
0 0 0 −1


 R3 × (−1)

−→




1 1 −2 1
0 1 −1 −1
0 0 0 1




(Row-Echelon Form)

The system of equations corresponding to this REF has as its third equation

0x+ 0y+ 0z = 1 i.e. 0 = 1

This equation clearly has no solutions - no assignment of numerical values to x,y and z will make
the value of the expression 0x + 0y + 0z equal to anything but zero. Hence the system has no
solutions.

Definition 1.2.13. A system of linear equations is called inconsistent if it has no solutions. A system
which has a solution is called consistent.

If a system is inconsistent, a REF obtained from its augmented matrix will include a row of the
form 0 0 0 . . . 0 1, i.e. will have a leading 1 in its rightmost column. Such a row corresponds to an
equation of the form 0x1 + 0x2 + · · ·+ 0xn = 1, which certainly has no solution.
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Example 1.2.14.

(a) Find the unique value of t for which the following system has a solution.

−x1 + x3 − x4 = 3
2x1 + 2x2 − x3 − 7x4 = 1
4x1 − x2 − 9x3 − 5x4 = t
3x1 − x2 − 8x3 − 6x4 = 1

SOLUTION: First write down the augmented matrix and begin Gauss-Jordan elimination.




−1 0 1 −1 3
2 2 −1 −7 1
4 −1 −9 −5 t
3 −1 −8 −6 1




R1 × (−1)
−→




1 0 −1 1 −3
2 2 −1 −7 1
4 −1 −9 −5 t
3 −1 −8 −6 1




R2 → R2 − 2R1
R3 → R3 − 4R1

−→
R4 → R4 − 3R1




1 0 −1 1 −3
0 2 1 −9 7
0 −1 −5 −9 t+ 12
0 −1 −5 −9 10




R3 → R3 − R4
−→




1 0 −1 1 −3
0 2 1 −9 7
0 0 0 0 t+ 2
0 −1 −5 −9 10




From the third row of this matrix we can see that the system can be consistent only if t + 2 = 0.
i.e. only if t = −2.

(b) Find the general solution of this system for this value of t.
SOLUTION: Set t = −2 and continue with the Gaussian elimination. We omit the third row, which
consists fully of zeroes and carries no information.




1 0 −1 1 −3
0 2 1 −9 7
0 −1 −5 −9 10




R4 × (−1)
−→

R3 ↔ R4




1 0 −1 1 −3
0 1 5 9 −10
0 2 1 −9 7




R3 → R3 − 2R2
−→




1 0 −1 1 −3
0 1 5 9 −10
0 0 −9 −27 27


 R3 × (− 1

9 )
−→




1 0 −1 1 −3
0 1 5 9 −10
0 0 1 3 −3




R1 → R1 + R3
−→

R2 → R2 + 5R3




1 0 0 4 −6
0 1 0 −6 5
0 0 1 3 −3




Having reached a reduced row-echelon form, we can see that the variables x1, x2 and x3 are
leading variables, and the variable x4 is free. We have from the RREF

x1 = −6 − 4x4, x2 = 5 + 6x4, x3 = −3 − 3x4.

If we assign the parameter name s to the value of the free variable x4 in a solution of the system,
we can write the general solution as

(x1, x2, x3, x4) = (−6 − 4s, 5 + 6s,−3 − 3s, s), s ∈ R.

Summary of Possible Outcomes when Solving a System of Linear Equations:

1. The system may be inconsistent. This happens if a REF obtained from the augmented matrix
has a leading 1 in its rightmost column.

2. The system may be consistent. In this case one of the following occurs :
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(a) There may be a unique solution. This will happen if all variables are leading variables,
i.e. every column except the rightmost one in a REF obtained from the augmented
matrix has a leading 1. In the case the reduced row-echelon form obtained from the
augmented matrix will have the following form :




1 0 0 . . . 0 ∗
0 1 0 . . . 0 ∗
0 0 1 . . . 0 ∗
...

...
...

. . .
...

...
0 0 0 . . . 1 ∗




with possibly some additional rows full of zeroes at the bottom. The unique solution
can be read from the right-hand column.
NOTE: If a system of equations has a unique solution, the number of equations must
be at least equal to the number of variables (since the augmented matrix must have
enough rows to accommodate a leading 1 for every variable).

(b) There may be infinitely many solutions. This happens if the system is consistent but
at least one of the variables is free. In this case the number of leading 1s in the row
echelon form is less than the number of variables in the system.

1.3 Gaussian Elimination and Matrix Algebra

We finish Chapter 1 with two observations about connections between the process of Gaussian
(or Gauss-Jordan) elimination and the algebra of matrices as objects that can be added, multipied,
inverted etc.

The first is that elementary row operations may themselves be interpreted as matrix multipli-
cation exercises. We write Im for the m×m identity matrix and Ei,j for the matrix that has 1 in the
(i, j)-position and zeros everywhere else. So for example I3 + 4E1,2 is the 3 × 3 matrix with entries
1 on the main diagonal, 4 in the (1, 2) position, and zeros everywhere else.

I3 + 4E1,2 =




1 4 0
0 1 0
0 0 1


 .

Theorem 1.3.1. Let A be a m×m matrix. Then elementary row operations on A amount to multiplying
A on the left by m×m matrices, as follows:

1. Mutiplying Row i by the non-zero scalar α is equivalent to multiplying A on the left by the matrix
Im+(α− 1)Ei,i, which has entries α in Position (i, i), 1 in all other positions on the main diagonal,
and zeros in all off-diagonal positions.

2. Switching Rows i and k amounts to multiplying A on the left by the matrix Im + Ei,k + Ek,i −
Ei,i−Ek,i. This matrix has entries 1 in the (i, k) and (k, i) positions, and in the (j, j) position for all
j �∈ {i, k}, and zeros elsewhere. It has exactly one 1 in each row and column, and is otherwise full of
zeros.

3. Adding α× Row i to Row k amounts to multiplying A on the left by the matrix Im + αEk,i, which
has α in the (k, i) position, entries 1 on the main diagonal, and zeros elswhere.

Here are a couple of examples.

1.




1 0 2 4
2 3 −1 1
2 2 3 2


 R2 → R2 − 2R1

−→




1 0 2 4
0 3 −5 −7
2 2 3 2


 =




1 0 0
−2 1 0

0 0 1






1 0 2 4
2 3 −1 1
2 2 3 2




2.




1 0 2 4
2 3 −1 1
2 2 3 2


 R1 ↔ R3

−→




2 2 3 2
2 3 −1 1
1 0 2 4


 =




0 0 1
0 1 0
1 0 0






1 0 2 4
2 3 −1 1
2 2 3 2




12



Matrices of the three types described in Theorem 1.3.1 are sometimes referred to as elemen-
tary matrices. They are always invertible, and their inverses are also elementary matrices. The
statement that every matrix can be reduced to RREF through a sequence of EROs is equivalent to
saying that for every matrix A with m rows, there exists a m×m matrix B, which is a product of
elementary matrices, with the property that BA is in RREF.

Exercise 1.3.2. Write down the inverse of an elementary matrix of each of the three types, and show that
it is also an elementary matrix.
(Hint: Think about how to reverse an elementary row operation, with another elementary row operation).

Exercise 1.3.3. Prove that every invertible matrix in Mn(R) is a product of elementary matrices.

The second point of this section is that not only can elementary row operations be interpreted
as matrix products, but they can also be used for calculations in matrix algebra beyond the context
of solving systems of linear equations. As an example of this, we note that Gauss-Jordan elimi-
nation can be used to calculate the inverse of a square matrices (and this is a much more efficient
method than calculating cofactors as we often do for 3 × 3 matrices). Suppose that A ∈ Mn(F),
for some field F. If A is invertible, let v1, v2, . . . , vn be the columns of its inverse. Then

AA−1 = A




| | . . . |

v1 v2 . . . vn
| | . . . |


 = A




| | . . . |

Av1 Av2 . . . Avn
| | . . . |


 = In.

It follows that for each i, Avi is the ith column of the identity matrix, which has 1 in position i
and zeros elsewhere. This means that vi is the solution of the linear system Avi = ei, where ei
is column i of the identity matrix, and the variables are the unknown entries of vi. Since A is
invertible, this system has the unique solution vi = A−1ei, and this unique solution cn be found
by applying Gauss-Jordan elimination to the augmented matrix of the system, which is [A|ei]. We
need to this for each column, but we can combine this into a single process by writing e1, e2, . . . , en
as n distinct columns in the “right hand side” of a n × 2n augmented matrix whose coefficient
matrix is A. If A is invertible, the RREF obtained from this augmented matrix has leading 1s in
the first n columns, which form a copy of In, and the inverse of A is written in the last n columns
of the RREF.

Example 1.3.4. Find A−1 if A =




3 4 −1
1 0 3
2 5 −4


.

To calculate A−1, We start with the 3 × 6 matrix

A � =




3 4 −1 1 0 0
1 0 3 0 1 0
2 5 −4 0 0 1


 .

Reduce A � to RREF. If the RREF has I3 in its first three columns, then columns 4,5,6 contain A−1. If
the RREF does not have leading 1s in its first three columns, we conclude that A is not invertible
(more later on the justification for this). We proceed as follows.
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


3 4 −1 1 0 0
1 0 3 0 1 0
2 5 −4 0 0 1


 R1 ↔ R2

−→




1 0 3 0 1 0
3 4 −1 1 0 0
2 5 −4 0 0 1




R2 → R2 − 3R1
−→

R3 → R3 − 2R1




1 0 3 0 1 0
0 4 −10 1 −3 0
0 5 −10 0 −2 1




R3 → R3 − R2
−→




1 0 3 0 1 0
0 4 −10 1 −3 0
0 1 0 −1 1 1




R3 ↔ R2
−→




1 0 3 0 1 0
0 1 0 −1 1 1
0 4 −10 1 −3 0


 R3 ↔ R3 − 4R2

−→




1 0 3 0 1 0
0 1 0 −1 1 1
0 0 −10 5 −7 −4




R3 × (− 1
10 )

−→




1 0 3 0 1 0
0 1 0 −1 1 1
0 0 1 − 1

2
7

10
2
5


 R1 → R1 − 3R3

−→




1 0 0 3
2 − 11

10 − 6
5

0 1 0 −1 1 1
0 0 1 − 1

2
7

10
2
5




The above matrix is in RREF and its first three columns comprise I3. We conclude that the
matrix A−1 is written in the last three columns, i.e.

A−1 =




3
2 − 11

10 − 6
5

−1 1 1
− 1

2
7
10

2
5


 .

It is easily checked that AA−1 = I3.

1.4 Review of Matrix Algebra

A m×n matrix over a field F is an an array of m rows and n columns, whose entries are elements
of F. We can take F to be the field of real numbers. The expression m × n is referred to as the
size of a matrix (even though what it really describes is the shape). Two matrices can be added
together if they have the same size; in this case their sum is obtained by just adding the entries
in each position. The m × n zero matrix is the m × n matrix whose entries are all zeros. It is the
identity element for addition of m×n matrices - this means that addition it to another m×n matrix
has no effect. A matrix can be multiplied by a scalar; this means multiplying each of its entries by
that scalar. With these operations of addition and scalar multiplication, the set of m× n matrices
over a field F is a vector space over F.
Notation: We use the notation Mm×n(F) for the vector space of all m× n matrices over F. When
m = n, we abbreviate this to Mn(F).

Example 1.4.1. In M2×3(R),

2
�

1 0 −1
2 −5 1

�
−3

�
2 4 −1
0 1 −3

�
=

�
2(1)− 3(2) 2(0)− 3(4) 2(−1)− 3(−1)
2(2)− 3(0) 2(−5)− 3(1) 2(−3)− 3(−3)

�
=

�
−4 −12 1

4 −13 3

�
.

We can sometimes also multiply matrices, but the way to do this is not as obvious. We begin
with a few definitions.

Definition 1.4.2. Suppose that v1, v2, . . . , vk are elements of a vector space V over a field F. A F-linear
combination (or just linear combination) of v1, . . . , vk is an element of V that has the form a1v1 + a2v2 +
· · · + akvk, wher the ai are elements of F. In this situation the ai are called the coefficients in the linear
combination.

The example above shows a linear combination of two matrices in M2×3(R), with coefficients
2 and −3.

Definition 1.4.3. A column vector is a matrix with one column. A row vector is a matrix with one row.
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Before defining matrix multiplication in general, we define the product of a matrix with a
column vector (when that exists).

Definition 1.4.4. Let A be a m× n matrix and let v be a column vector with n entries. Then the matrix-
vector product Av is the column vector obtained by taking the linear combination of the columns of A whose
coefficients are the entries of v. It is a column vector with m entries.

Example 1.4.5.
�

2 4 −1
0 1 −3

�


3
−2

1


 = 3

�
2
0

�
+ (−2)

�
4
1

�
+ 1

�
−1
−3

�
=

�
−3
−5

�

Note that the product Av is only defined when the number of entries in a row of A (i.e. the
number of columns in A) is equal to the number of entries in v. In the same way, if u is a row
vector with m entries, and A is a m × n matrix, then the vector-matrix product uA is the linear
combination of the rows of A whose coefficients are the entries of u. It is a row vector with n
entries (a 1 × n matrix).

Definition 1.4.6. Let A and B be matrices of size m× p and p× n respectively. Write v1, . . . , vn for the
columns of B. Then the product AB is the m× n matrices whose columns are Av1, . . . ,Avn.

Remarks

1. This version of the definition of the matrix product AB emphasizes that we can think about
the matrix B as being an arrangement of n column vectors placed side by side. This view-
point can be quite useful, but maybe not as the only way to think about matrices. But in this
situation it allows use to understand matrix multiplication as a straightforward extension
of matrix-vector multiplication.

2. Exercise: write down an alternative version of Definition 1.4.6, that emphasises vector-
matrix products of the rows of A with the matrix B.

3. If the number of entries in a row of A (the number of columns of A) is not equal to the
number of entries in a column of B, then the product AB is not defined.

Matrix products are often presented and explained just in terms of their individual entries.
This viewpoint is sometimes convenient and it is quite standard, and it gives us an opportunity
to introduce some notation that essential for linear algebra. Suppose that A is a m× p matrix and
B is a p × n matrix, with entries in a field F. The rows of A are labelled Row 1 through Row m,
from top to bottom, and the columns of A are labelled Column 1 through Column p, from left to
right (similar story for B). The entry in Row i and Column j of A is denoted Aij. So A11 is the
entry in the upper left corner of A. Now AB is the product of a m × p and a p × m matrix: it is
a m × n matrix. According to Definition 1.4.6, the entry in the the (i, j) position of AB (i.e. Row
i and Column j) is the ith entry of the vector Avj, where the vector vj is Column j of B. Again
according to Definition 1.4.6, this is the ith entry of the linear combination of the columns of A
with coefficients from the jth column of B. This is the linear combination of the ith entries of the
columns of A (i.e. the entries of Row i of A, with coefficients from Column j of B). It is given by

(AB)ij = Ai1Bij +Ai2B2j + · · ·+AipBpj =

p�

k=1

AikBkj.

It is worth taking some time to get used to the notation in the above line if it is not already familiar.
We note that the expression for (AB)ij above involves the scalar product of two vectors with

p entries. For a field F, we write Fp for the vector space of all vectors with p entries from F.
Sometimes we will need to specify whether we mean row vectors or column vectors, but for now
we will cheat and allow every ordered list of p elements of F to be considered as an element of
Fp, regardless of how it is written. For example we might consider elements of R3 to be written
as coordinates of a point, like (1, 1, 3), or as column vectors with three real entries.

Definition 1.4.7. Let u = (a1, . . . ,ap) and v = (b1, . . . ,bp) be vectors in Fp. Then the ordinary scalar
product or dot product of u and v is the element of F defined by

u · v = a1b1 + a2b2 + · · ·+ apbp =

p�

k=1

akbk.
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If u · v = 0, we say that u and v are orthogonal with respect to the scalar product. If F = R, this
means that the vectors u and v are perpendicular in Euclidean space.

We may now observe that if A and B are respectively a m×p and a p×n matrix, then the entry
in the (i, j)-position of the product AB is the scalar product of Row i of A and Column j of B, both
regarded as vectors in Fp. The product AB itself is a table of values of scalar products of Rows of
A with Columns of B. If we write u1, . . . ,um for the rows of A (vectors in Fp) and v1, . . . , vn for
the columns of B (vectors in Fp), then

AB =




u1 · v1 u1 · v2 . . . u1 · vn
u2 · v1 u2 · v2 . . . u2 · vn

...
...

...
um · v1 um · v2 . . . um · vn




1.4.1 Two ways to think about a matrix

The definition of matrix multiplication can look a bit obscure, if it is presented purely in terms
of how the entries of A and B are combined to produce the entries of AB. It does make sense
however, even in very practical contents as in the following example.

Example 1.4.8. One way for a matrix to arise is as a table of data from some “real” (i.e. not
just mathematical) process. Remarkably, the operations of matrix algebra can have a meaning
even in this context. As an example, let A be the 3 × 3 matrix formed by the table that gives the
numbers of first year Humanities (H), Engineering (E) and Science (S) students in first year at
Eigen University, in 2015, 2016 and 2017.

H E S
2015 50 100 70
2016 60 80 80
2017 80 70 70

A =




50 100 70
60 80 80
80 70 70




Every fiirst year student at Eigen University takes either Linear Algebra (LA) or Calculus (C)
or both. The table below shows the numbers of ECTS credits completed annually in each, by
students in each of the three subject areas.

LA C
H 10 0
E 15 15
S 20 10

B =




10 0
15 15
20 10




Now look at the meaning of the entries of the product AB.

AB =




50 100 70
60 80 80
80 70 70







10 0
15 15
20 10


 =




50(10) + 100(15) + 70(20) 50(0) + 100(15) + 70(10)
60(10) + 80(15) + 80(20) 60(0) + 80(15) + 80(10)
80(10) + 70(15) + 70(20) 80(0) + 70(15) + 70(10)




=




3400 2200
3400 2000
3250 1750


 .

The entries in the first column of AB are the total numbers of linear algebra credits taken by first
year students in 2015, 2016 and 2017. In the second column are the total numbers of calculus
credits in each of the three years. The matrix product AB represents the following table of data

LA credits C credits
2015 3400 2200
2016 3400 2000
2017 3250 1750

Another way to interpret matrix multiplication is in terms of linear transformations, which are
the primary functions between vector spaces that are of interest in linear algebra. For now we
will stick to linear transformations between spaces of real column vectors.
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Definition 1.4.9. Let m and n be positive integers. A linear tranformation T from Rn to Rm is a function
T : Rn → Rm that satisfies

• T(u+ v) = T(u) + T(v), and

• T(λv) = λT(v),

for all u and v in Rn, and all scalars λ ∈ R.

Suppose that T : R3 → R2 is a linear transformation. Then we can calculate the image under T

of any vector




a
b
c


, if we know the images under T of the standard basis vectors




1
0
0


,




0
1
0




and




0
0
1


. From the definition, we have

T




a
b
c


 = aT




1
0
0


+ bT




0
1
0


+ cT




0
0
1


 = A




a
b
c


 ,

where A is the 2 × 3 matrix that has the images of the three standard basis vectors as its three
columns.

Example 1.4.10. Suppose that the images of the three standard basis vectors under T are respectively�1
2

�
,
�1

4

�
and

�
−2
3

�
. Then the matrix A of T is

A =

�
1 1 −2
2 4 3

�
.

For any vector v ∈ R3, its image under T is the matrix-vector product Av. For example

T




1
0

−2


 =

�
1 1 −2
2 4 3

�


1
0

−2


 =

�
−3

8

�

The matrix A may be considered as a representation of the linear transformation T . Now

suppose that S : R2 → R2 is a linear transformation whose matrix is B =

�
1 −1
2 0

�
. This

means that the images under S of
�1

0

�
and

�0
1

�
are respectively the two columns of S. Now the

composition S ◦ T is a linear transformation from R3 to R2, so is is represented by a matrix. How
dos this matrix depend on A and B. To answer this, think about calculating the image of a vector
v under the composition S ◦ T (S after T ).

S ◦ T(v) = S(Tv) = S(Av) = B(Av) = (BA)v. (1.1)

This is saying that the matrix of the transformation S ◦ T is the matrix product BA, where B and
A are respectively the matrices of S and T . Thus matrix multiplcation may be interpreted as
corresponding to composition of linear transformations.

Two things to note about 1.1:

1. It uses the fact that matrix multiplication is associative, i.e. (AB)C = A(BC), whenever
A,B,C are matrices for which the products AB and BC are defined. It is true but not entirely
obvious that this property holds. Something to think about.

2. We have also used the fact that the composition of two linear transformations (when it is
defined) is a linear transformation. If f : Rn → Rp and g : Rq → Rm are linear transforma-
tions, then the composition f ◦ g is defined only if p = q, and in this case f ◦ g is a linear
transformation from Rn to Rm. This is equivalent to the statment that the product of a m×q
with a p× n matrix is defined only if p = q, and in this case it is a m× n matrix.
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1.4.2 Some more concepts from matrix algebra

This short section notes some objects and notation that we will need throughout the course.
The n× n Identity Matrix
For a positive integer n, the n× n identity matrix, denoted In, is the n× n matrix whose entries
in the (1, 1), (2, 2), . . . , (n,n) positions (the positions on the main diagonal) are all 1, and whose
entries in all other positions (all off-diagonal positions) are 0. For example

I2 =

�
1 0
0 1

�
. I4 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

The special property that In has is that is an identity element or neutral element for matrix multpli-
cation. Multiplying another matrix by it has no effect. This means

• If A is any matrix with n rows, then InA = A, and

• If B is any matrix with n columns, then BIn = B.

• In particular, if C is a n× n matrix, then CIn = InC = C.

Exercise 1.4.11. Using our intepretations of matrix multiplication so far, explain why the matrix In has
this neutral property. For example, use Definition 1.4.4 to describe what happens when a column vector
with n entries is multiplied on the left by In.
What is the linear transformation that is represented by In? Why is it that composing this linear transfor-
mation with any other has no effect?

The Inverse of a Matrix
Let A be a square matrix of size n × n. If there exists a n × n matrix B for which AB = In and
BA = In, then A and B are called inverses (or multiplicative inverses) of each other. If it does not
already have another name, the inverse of A is denoted A−1. The relationship between A and A1

resembles that of two rational numbers that are reciprocals of each other, such as 5
31 and 31

5 . Their
product is the identity element for multiplication (1 in the case of the rational numbers) and so
multiplying by one of them reverses the work of multiplying by the other. When applying this
general principle in the case of matrices, we need to remember that matrix multiplication is not
commutative.

Example 1.4.12. In M2(Q), the matrices
�

3 2
−5 −4

�
and

�
2 1

− 5
2 − 3

2

�
are inverses of each other.

Not every square matrix has an inverse. For example the 2 × 2 matrix
�

3 2
−6 −4

�
does not.

(Challenge: prove this without using any knowledge about the determinant of a 2 × 2 matrix).

Exercise 1.4.13. Prove that a square matrix can have only one inverse.
(Hint: If both B and C are inverses of the square matrix A, think about the product BAC.)

Another important ingredient of matrix algebra that we will need is the determinant of a square
matrix. The determinant of a matrix in Mn(F) is an element of F that is defined in a complicated
way in terms of the matrix entries (it is not too bad if n = 2 or n = 3, but in general it is compli-
cated to describe and to calculate). A square matrix has an inverse if and only if its determinant
is not zero. We will define the determinant later.

The Transpose

Definition 1.4.14. The transpose of the m×n matrix A, which is denoted AT , is defined to be the n×m
matrix which has the entries of Row 1 of A in its first column, the entries of Row 2 of A in its second
column, and so on.
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