Euclidean and non-Euclidean Geometry (MA3101) Lecture 17: Perspectivities

Dr Rachel Quinlan

November 18, 2024

In \mathbb{RP}^2 , every pair of distinct points belongs together to a unique line.

This property is shared by the Euclidean plane and the hyperbolic plane, but not the sphere.

Distinct projective points $[a_1 : b_1 : c_1]$ and $[a_2 : b_2 : c_2]$ determine a unique plane Π in \mathbb{R}^3 that contains the points $O, P(a_1, b_1, c_1), Q(a_2, b_2, c_2)$. Then $\mathcal{L}\Pi$ is the unique projective line containing $[a_1 : b_1 : c_1]$ and $[a_2 : b_2 : c_2]$ in \mathbb{RP}^2 .

Every pair of distinct lines in \mathbb{RP}^2 intersect in a unique point.

This property is not shared by the Euclidean plane, \mathcal{H}^2 or the sphere S^2 . Let \mathcal{L}_1 and \mathcal{L}_2 be distinct projective lines.

Then there are planes Π_1 and Π_2 through O in \mathbb{R}^3 , where \mathcal{L}_1 and \mathcal{L}_2 are respectively the sets of lines through O in Π_1 and Π_2 .

As planes in \mathbb{R}^3 , Π_1 and Π_2 intersect in a single line through O: this is the point of intersection in \mathbb{RP}^2 of the projective lines \mathcal{L}_1 and \mathcal{L}_2 .

Back to window-taping

Suppose that Π and Π' are two planes in \mathbb{R}^3 (not passing through the origin *O*, and not parallel to each other). We define a mapping

 $f:\Pi\to\Pi'$

by $X \to X'$, where X' is the point of intersection of Π' with the line OX through O and X (and X is any point of Π).

This determines f(X) provided that the line OX is not parallel to Π' .

The mapping $f : \Pi \to \Pi'$ is called a perspectivity.

If Π' is a window and Π shows some scene, the function f translates the scene to what an artist positioned at O would draw, if they faithfully trace what they see on the window.

Dr Rachel Quinlan

Perspectivity as a function from one plane to another

For a particular pair of planes Π and Π' , we can write down a formulaic description of f. For example if X = (3, 1, 2) belongs to Π , then f(X) is the unique (3t, t, 2t) that satisfies the equation of Π' .

If L is a line in Π , then f(L) is a line in Π' .

The set of lines connecting O to points of L forms a plane (yellow in the picture) that intersects Π' in a

line L'. f(L) = L'

The exception is when L is K, the intersection of Π with the plane through O parallel to Π' . The domain of f is $\Pi \setminus K$.

The image of f is $\Pi' \setminus K'$, where K' is the intersection of Π' with the plane through O parallel to Π .

Perspectivity as a function from one plane to another

For a particular pair of planes Π and Π' , we can write down a formulaic description of f. For example if X = (3, 1, 2) belongs to Π , then f(X) is the unique (3t, t, 2t) that satisfies the equation of Π' .

```
If L is a line in \Pi, then f(L) is a line in \Pi'.
```

The set of lines connecting O to points of L forms a plane (yellow in the picture) that intersects Π' in a

line L'. f(L) = L'

The image of f is $\Pi' \setminus K'$, where K' is the intersection of Π' with the plane through O parallel to Π .

Perspectivity as a function from \mathbb{RP}^2 to \mathbb{RP}^2

Let Σ and Σ' be the planes through O, respectively parallel to Π and Π' .

Points of \mathbb{RP}^2 are lines through O. Each of these intersects Π at one point, except the ones that lie in Σ .

Points of \mathbb{RP}^2 can be identified with

- points of Π, and
- I lines in Σ through O

or equally well with points of Π' and lines in Σ' through O). As a mapping from \mathbb{RP}^2 to \mathbb{RP}^2 , f is a bijection, its domain and range are all of \mathbb{RP}^2 . Recall K is the line $\Pi \cap \Sigma'$.

- For X ∈ Π\K, OX is a line through a point of Π'. All ponts of Π' occur this way, except those of K' = Π' ∩ Σ
- For $X \in K$, OX is a line through O in Σ' .
- If OX is a line in Σ , then OX corresponds to a point of $\Pi' \cap \Sigma = K'$.