
4.3 Lecture 17: The Ascending Chain Condition

It is not true in every integral domain that every non-zero non-unit element is the product of a
finite number of irreducible elements. Let R be the subset of Q[X] consisting of all elements whose
constant term is an integer. We can check that R is a subring of Q[X] (what needs to be checked
is that R is closed under polynomial addition, subtraction and multiplication and that R contains
the multiplicative identity element of Q[X]). Then R is an integeral domain, since Q[X] has no zero
divisors.

Consider the element X of R (constant term 0). The polynomial X is irreducible in Q[X], but
it factorizes in R, for example as 2 × 1

2X. The element 2 is irreducible in R, but 1
2X is not, since it

factorizes (for example) as 2 × 1
4X or 3 × 1

6X. Any factorization of X in R must include one factor
that is a rational multiple of X, with the remaining factors being integers. But no rational mutliple
of X is irreducible in R, since aX can be written (for example) as 2 × a

2 X, for any non-zero a ∈ Q.
It follows that X is not the product of (a finite number of) irreducible elements of R.

The theme of this lecture is to identify a property of rings that ensures that every non-zero
non-unit element factorizes as a (finite) product of irreducibles. This means that the process of
“pulling out” irreducible factors does not continue indefinitely, so that we do not have “failures
of factorization” of the kind in the above example.

Recall that an ideal I of a commutative ring with identity R is principal if I = hai for some
a ∈ R, i.e.

I = {ra : r ∈ R}.

An integral domain R is a principal ideal domain if all the ideals of R are principal. Examples of
PIDs include Z and F[x] for a field F, and all Euclidean domains.

Definition 56. A commutative ring R satisfies the ascending chain condition (ACC) on ideals if there
is no infinite sequence of ideals in R in which each term properly contains the previous one. Thus if

I1 ⊆ I2 ⊆ I3 ⊆ . . .

is a chain of ideals in R, then there is some m for which Ik = Im for all k � m.

Note: Commutative rings satisfying the ACC are called Noetherian, after Emmy Noether (1882-
1935), who was among the first people to recognize the significance of this property, and of ideals
in general.

Example 57. The ring R of the example above is not Noetherian.

An example of an infinite strictly ascending chain of ideals in R is

hXi ( h1

2
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4
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To see why (for example) h 1
2Xi ( h 1

4Xi note that the only elements of degree 0 in R are the integers.

So 1
4X is not a multiple of 1

2X in R.

Example 58. The ACC is satisfied in Z.

Proof: Let I1 ⊆ I2 ⊆ . . . be an ascending chain of ideals in Z. Choose k with Ik 6= {0}. Then
Ik = hni for some positive integer n. Now for an ideal hmi of Z we have n ∈ hmi if and only
if m|n. Since n has only a finite number of divisors in Z, this means only finitely many different
ideals can appear after Ik in the chain.

Theorem 59. Let R be a PID. Then the ACC is satisfied in R.

Proof: Let I1 ⊆ I2 ⊆ . . . be an ascending chain of ideals in R. Let I = ∪∞
i=0Ii. Then
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1. I is closed under addition and multiplication, for suppose a and b are elements of I. Then
there are ideals Ij and Ik in the chain with a ∈ Ij and b ∈ Ik. If m � max(j, k) then both a

and b belong to Im and so do a+ b and ab. So a+ b ∈ I and ab ∈ I.

2. 0 ∈ I since 0 ∈ Ii for each i.

3. Suppose a ∈ I. Then a ∈ Ij for some j, and −a ∈ Ij. So −a ∈ I. Thus I is a subring of R.

4. Furthermore I is an ideal of R. To see this let a ∈ I. Then a ∈ Ij for some j. If r is any element
of R then ra ∈ Ij and ra ∈ I. So whenever a ∈ I we have ra ∈ I for all r ∈ R. Thus I is an
ideal of R.

Now since R is a PID we have I = hci for some c ∈ R. Since c ∈ I there exists n with c ∈ In.
Then In = hci and Ir = hci for all r � n. So the chain of ideals stabilizes after a finite number of
steps, and the ACC holds in R.

Theorem 60. Let R be a Noetherian integral domain (for example a PID). Then every element of R that is
neither zero nor a unit is the product of a finite number of irreducibles.

Proof: Let a ∈ R, a 6= 0, a 6∈ U(R) (i.e. a not a unit).

1. First we show that a has an irreducible factor. If a is irreducible, this is certainly true. If not
then we can write a = a1b1 where neither a1 nor b1 is a unit. Then a ∈ ha1i, and hai ⊂ ha1i.
This inclusion is strict for hai = ha1i would imply a1 = ac and a1 = a1b1c for some c ∈ R.
Since R is an integral domain this would imply that b1 is a unit, contrary to the fact that the
above factorization of a is proper.

If a1 is not irreducible then we can write a1 = a2b2 for non-units a2 and b2 and we obtain

hai ⊂ ha1i ⊂ ha2i,

where each of the inclusions is strict. If a2 is not irreducible we can extend the above chain,
but since the ACC is satisfied in R the chain must end after a finite number of steps at an
ideal hari generated by an irreducible element ar. So a has ar as an irreducible factor.

2. Now we show that a is the product of a finite number of irreducible elements of R. If a is
not irreducible then by the above we can write a = p1c1 where p1 is irreducible and c1 is not
a unit. Thus hai is strictly contained in the ideal hc1i. If c1 is not irreducible then c1 = p2c2

where p2 is irreducible and c2 is not a unit. We can build a strictly ascending chain of ideals:

hai ⊂ hc1i ⊂ hc2i . . .

This chain must end after a finite number of steps at an ideal hcri with cr irreducible. Then

a = p1p2 . . .prcr

is an expression for a as the product of a finite number of irreducibles in R.
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