Euclidean and non-Euclidean Geometry (MA3101) Lecture 16: The Real Projective Plane RP²

Dr Rachel Quinlan

November 13, 2024

Example A consistent and an inconsistent system:

(A) x + y = 2 ^x + 2^y = 3 (B) x + y = 2 x + y = 3

Solution sets are $x = y = 1$ and the empty set. We introduce a new variable z and consider instead the homogeneous systems

$$
(A')\begin{array}{cccccc}\nx & + & y & = & 2z \\
x & + & 2y & = & 3z\n\end{array} \qquad (B')\begin{array}{cccccc}\nx & + & y & = & 2z \\
x & + & y & = & 3z\n\end{array}
$$

Now the first has solution set $\{(t, t, t) : t \in \mathbb{R}\}.$ The second has solution set $\{(t, -t, 0) : t \in \mathbb{R}\}.$

Each of these is a line through the origin in \mathbb{R}^3 , reflecting the fact that the coefficient matrices have nullity 1.

The Real Projective Plane

If $z' \neq 0$, then (x', y', z') is a solution of (A') if and only if $\left(\frac{x'}{z'}\right)$ $rac{x'}{z'}$, $rac{y'}{z'}$ $(\frac{y}{z'})$ is a solution of (A) .

In our example, (x', y', z') is a solution provided $\frac{x'}{z'}$ $\frac{x'}{z'}=\frac{x'}{y'}$ $\frac{x}{y'}=1$, or

 $[x': y': z'] = [1, 1, 1].$

Same for (B') and (B) , but (B') has no solution with $z\neq 0$.

Solutions with $z = 0$: $x = y = z = 0$ for (A') , and $\{(t, -t, 0)\}$ for (B') .

How do we interpret these?

Definition We define an equivalence relation on the set of nonzero vectors in \mathbb{R}^3 by

 $(a, b, c) \sim (a', b', c') \Longleftrightarrow (a', b', c') = \lambda(a, b, c), \lambda \neq 0, \lambda \in \mathbb{R}.$ Equivalence classes are lines through the origin in \mathbb{R}^3 . These classes are the points of the real projective plane \mathbb{RP}^2 The class of (a, b, c) is denoted $[a : b : c]$.

Interpretation of solution of (B') in \mathbb{RP}^2

The system (B) is (B') with $Z=1$.

The plane $Z = 1$ sits above the origin O, parallel to the XY-plane.

Within $Z = 1$, every point Q of the line $X + Y = 1$ determines a unique point of \mathbb{RP}^2 , namely the line OQ. Same for $X + Y = 2$.

We can slide the point Q along the line $X + Y = 1$ (or $X + Y = 2$) and observe how the line *OQ* moves. In the distant limit, OQ approaches the line $X + Y = 0$ in the XY -plane.

In \mathbb{RP}^2 , this Euclidean line is the point $[1:-1:0]$ (or any $[t:-t:0]$ with $t \neq 0$).

It is an "ordinary" point of the projective plane \mathbb{RP}^2 , appearing as a "point at infinity" in this particular setup with respect to these parallel lines in the plane $Z = 1$.

A point in \mathbb{RP}^2 is a line through O in $\mathbb{R}^3.$

It has homogeneous coordinates $[a : b : c]$, where (a, b, c) is any point of the line other than $O.$ So $[2:-1:2]=[1:-\frac{1}{2}]$ $\frac{1}{2} : 1] = [6 : -3 : 6]$, etc.

A line in \mathbb{RP}^2 is the set of lines through O in a \mathbb{R}^3 plane Π through $O.$

How to think of this projective line as a line in any "usual" way? Take a (Euclidean) line L in Π that does not include O.

Every line through O in Π intersects L in a single point, except the one line L' through O in Π that is parallel to L .

All points of the projective line determined by Π , except for L' , are represented by the "ordinary" points of L.

A projective line resembles a Euclidean line with a "point at infinity" added.

Every point is a "point at infinity"

No point of \mathbb{RP}^2 is intrinsically a "point at infinity". Any point of a given projective line can be seen as the "point at infinity".

For example, take the projective line $L\Pi$ determined by the plane $\Pi : x + y - z = 0$ in \mathbb{R}^3 . Its points are $[a:b:c]$, where $a+b-c=0$, for example $[1:1:2]$ or $[3:5:8]$.

Take the point $[1:1:2]$ of $\mathcal{L}\Pi$ for example. $[1:1:2]$ is the line $\{(t, t, 2t): t \in \mathbb{R}\}$ through O in \mathbb{R}^3 .

Take a line L in Π parallel to $[1:1:2]$, not through O. $L = \{(2, 1, 3) + t(1, 1, 2)\} = \{[2 + t, 1 + t, 3 + 2t]\}.$

Every point Q of L determines the point OQ or $[2 + t : 1 + t : 3 + 2t]$ of LΠ. This accounts for all points of LΠ except $[1:1:2]$.

Every point is a "point at infinity"

No point of \mathbb{RP}^2 is intrinsically a "point at infinity". Any point of a given projective line can be seen as the "point at infinity".

For example, take the projective line $\mathcal{L}\Pi$ determined by the plane $\Pi: x+y-z=0$ in \mathbb{R}^3 . Its points are $[a:b:c]$, where $a+b-c=0$, for example $[1:1:2]$ or $[3:5:8]$.

Take the point $[1:1:2]$ of $\mathcal{L}\Pi$ for example. $[1:1:2]$ is the line $\{(t, t, 2t): t \in \mathbb{R}\}$ through O in \mathbb{R}^3 .

Take a line L in Π parallel to $[1:1:2]$, not through O. $L = \{(2, 1, 3) + t(1, 1, 2)\} = \{[2 + t, 1 + t, 3 + 2t]\}.$

As $t \to \pm \infty$, OQ approaches the line through O parallel to L, [1 : 1 : 2]. In this view, $[1:1:2]$ is the "point at infinity". Every point of $\mathcal{L}\Pi$ appears as the "point at infinity" in $\mathcal{L} \Pi$ for some choice of L in Π .

In \mathbb{RP}^2 , every pair of distinct points belongs together to a unique line.

This property is shared by the Euclidean plane and the hyperbolic plane, but not the sphere.

Distinct projective points $[a_1 : b_1 : c_1]$ and $[a_2 : b_2 : c_2]$ determine a unique plane Π in \mathbb{R}_3 that contains the points O, $P(a_1, b_1, c_1)$, $Q(a_2, b_2, c_2)$. Then $\mathcal{L}\Pi$ is the unique projective line containing $[a_1 : b_1 : c_1]$ and $[a_2 : b_2 : c_2]$ in \mathbb{RP}^2 .

Every pair of distinct lines in \mathbb{RP}^2 intersect in a unique point.

This property is not shared by the Euclidean plane, \mathcal{H}^2 or the sphere \mathcal{S}^2 . Let \mathcal{L}_1 and \mathcal{L}_2 be distinct projective lines.

Then there are planes Π_1 and Π_2 through O in \mathbb{R}^3 , where \mathcal{L}_1 and \mathcal{L}_2 are respectively the sets of lines through O in Π_1 and Π_2 .

As planes in \mathbb{R}^3 , Π_1 and Π_2 intersect in a single line through O : this is the point of intersection in \mathbb{RP}^2 of the projective lines \mathcal{L}_1 and \mathcal{L}_2 .