
4.2 Lecture 16: A ring that is not a UFD

Let Z[
√
−3] denote the set of complex numbers of the form a+ b

√
−3 where a and b are integers

(and
√
−3 denotes the complex number

√
3i). We will show that Z[

√
−3] is not a UFD (we can

check that it is a ring, under the usual addition and multiplication of complex numbers).

Claim: Z[
√
−3] is not a UFD.

The proof of this claim will involve a number of steps.

1. We define a function (called the norm) φ : Z[
√
−3] −→ Z�0 by φ(α) = αᾱ where ᾱ denotes

the complex conjugate of α. Thus

φ(a+ b
√
−3) = (a+ b

√
−3)(a− b

√
−3) = a2 + 3b2.

Let α, β ∈ Z
√
−3. Then

φ(αβ) = αβαβ = αβᾱβ̄ = αᾱββ̄ = φ(α)φ(β).

So φ is multiplicative.

2. Suppose α is a unit of Z[
√
−3] and let β be its inverse. Then φ(αβ) = φ(1) = 1 = φ(α)φ(β).

Since φ(α) and φ(β) are positive integers this means φ(α) = 1 and φ(β) = 1. So φ(α) = 1
whenever α is a unit.

On the other hand φ(a+ b
√
−3) = 1 implies a2 + 3b2 = 1 for integers a and b which means

b = 0 and a = ±1. So the only units of Z[
√
−3] are 1 and −1.

3. Suppose φ(α) = 4 for some α ∈ Z[
√
−3]. If α is not irreducible in Z[

√
−3] then it factorizes

as α1α2 where α1 and α2 are non-units. Then we must have

φ(α1) = φ(α2) = 2.

This would mean 2 = c2 + 3d2 for integers c and d which is impossible. So if φ(α) = 4 then
α is irreducible in Z[

√
−3].

4. Now 4 = 2 × 2 and 4 = (1 +
√
−3)(1 −

√
−3) in Z[

√
−3]. The elements 3, 1 +

√
−3 and

1 −
√
−3 are all irreducible in Z[

√
−3] by item 3. above. Furthermore 2 is not an associate of

either 1 +
√
−3 or 1 −

√
−3 as the only units in Z[

√
−3] are 1 and −1. We conclude that the

factorizations of 4 above are genuinely different, and Z[
√
−3] is not a UFD.

Note that 2 is an example of an element of Z[
√
−3] that is irreducible but not prime. We can see

that 2 is not prime because 2 divides (1−
√
−3)(1+

√
3) but 2 divides neither 1−

√
−3 nor 1+

√
−3.

Remark: The ring Z[i] = {a+ bi : a,b ∈ Z} is a UFD.

Theorem 54. Let F be a field. Then the polynomial ring F[X] is a UFD.

Proof: We need to show that every non-zero non-unit in F[X] can be written as a product of
irreducible polynomials in a manner that is unique up to order and associates.

So let f(X) be a polynomial of degree n � 1 in F[X]. If f(X) is irreducible there is nothing to
do. If not then f(X) = g(X)h(X) where g(X) and h(X) both have degree less than n. If g(X) or
h(X) is reducible further factorization is possible; the process ends after at most n steps with an
expression for f(X) as a product of irreducibles.

To see the uniqueness, suppose that

f(X) = p1(X)p2(X) . . .pr(X) and
f(X) = q1(X)q2(X) . . .qs(X)

are two such expressions, with s � r. Then q1(X)q2(X) . . .qs(X) belongs to the ideal �p1(X)� of
F[X]. Since this ideal is prime (as p1(X) is irreducible) this means that either q1(X) ∈ �p1(X)� or
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q2(X) . . .qs(X) ∈ �p1(X)�. Repeating this step leads to the conclusion that at least one of the qi(X)
belongs to �p1(X)�. After reordering the qi(X) if necessary we have q1(X) ∈ �p1(X)�. Since q1(X)
is irreducible this means q1(X) = u1p1(X) for some unit u1. Then

p1(X)p2(X) . . .pr(X) = u1p1(X)q2(X) . . .qs(X).

Since F[X] is an integral domain we can cancel p1(X) from both sides to obtain

p2(X) . . .pr(X) = u1q2(X) . . .qs(X).

After repeating this step a further r− 1 times we have

1 = u1u2 . . .urqr+1(X) . . .qs(X),

where u1, . . . ,ur are units in F[X] (i.e. non-zero elements of F). This means s = r, since the polyno-
mial on the right in the above expression must have degree zero. We conclude that q1(X), . . . ,qs(X)
are associates (in some order) of p1(X), . . . ,pr(X). This completes the proof. �
Remark For the “existence of factorizations” part of this proof, we used the concept of the degree
of a polynomial, which plays the role here that the order relation on the integers did for Z. Both
enable a division algorithm, in F[X] and in Z respectively. For the uniqueness part, we used the
fact that F[X] is a PID to assert that irreducible elements are prime.

Euclidean Domains

Definition 55. A Euclidean domain is an integral domain R with a function d : R\{0R} → Z�0 that
satisfies the following two conditions:

1. d(a,b) � max(d(a),d(b)) for all nonzero a,b ∈ R.

2. For any a ∈ R and and b �= 0 in R, there exist q and r in R for which a = bq + r, and r = 0 or
d(r) < d(b).

The function d is called a Euclidean function in this case. The second property resembles a
division algorithm, but with no requirement about uniqueness.

The absolute value function is a Euclidean function on Z and the degree is a Euclidean function
on the polynomial ring F[X] for a field F. Another example of a Euclidean domain is the ring of
Gaussian integers Z[i], a Euclidean function there is φ defined by φ(x+yi) = x2+y2. The existence
of a Euclidean function is enough to ensure that every non-zero non-unit element is the product
of a finite number of irreducible elements. It can be shown that every ideal of a Euclidean domain
is prinicpal, generated by an element with a minimal value of d, as we did for Z and F[X]. This
means that every Euclidean domain is a PID and its irreducible elements are prime. This means
that uniqueness of factorization can can be establised as in the proof of Theorem 54. So every
Euclidean domain is a UFD.
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