
Chapter 4

Unique Factorization Domains

4.1 Lecture 15: Unique Factorization Domains (UFDs)

Throughout this section R will denote an integral domain (i.e. a commutative ring with identity
containing no zero-divisors). Recall that a unit of R is an element that has an inverse with respect
to multiplication. If a is any element of R and u is a unit, we can write

a = u(u−1a).

This is not considered to be a proper factorization of a. For example we do not consider 5 = 1(5)
or 5 = (−1)(−5) to be proper factorizations of 5 in Z. We do not consider

x2 + 2 = 2
�

1
2
x2 + 1

�

to be a proper factorization of x2 + 2 in Q[x].

Definition 51. An element a in an integral domain R is called irreducible if it is not zero or a unit, and
if whenever a is written as the product of two elements of R, one of these is a unit.

An element p of an integral domain R is called prime if p is not zero or a unit, and whenever p divides
ab for elements a,b of R, either p divides a or p divides b.

Notes

1. A non-zero non-unit element is prime if and only if the principal ideal that it generates is a
prime ideal.

2. Elements r and s are called associates of each other if s = ur for a unit u of R. So a ∈ R is
irreducible if it can only be factorized as the product of a unit and one of its own associates.
If two elements are associates, they generate the same prinicipal ideal.

3. If R is an integral domain, every prime element of R is irreducible. To see this let p ∈ R be
prime and suppose that p = rs is a factorisation of p in R. Then since p divides rs, either
p divides r or p|s. There is no loss of generality in assuming p divides r. Then r = pa for
some element a of R, and p = rs so p = pas. Then p − pas = 0 so p(1 − as) = 0 in R. Thus
as = 1 since R is an integral domain and p �= 0. Then s is a unit and p = rs is not a proper
factorisation of p. Hence p is irreducible in R.

It is not true that every irreducible element of an integral domain must be prime, as we will
see in Lecture 16.
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4. In any commutative ring R, an element a is irreducible if and only if the principal ideal �a�
is maximal among prinicipal ideals of R. This is becasue if �a� � �b� � R for some b ∈ R,
then b is a divisor of a that is neither an associate of a nor a unit. In the special case where
R is a PID, it follows that a ∈ R is irreducible if and only if �a� is a maximal ideal of R. Since
every maximal ideal is prime, it follows that every irreducible element of a PID is a prime
element.

Examples:

1. In Z the units are 1 and −1 and each non-zero non-unit element has two associates, namely
itself and its negative. So 5 and −5 are associates, 6 and −6 are associates, and so on. The
irreducible elements of Z are p and −p, for p a prime number.

2. In Q[x], the units are the non-zero constant polynomials. The associates of a non-zero non-
constant polynomial f(x) are the polynomials of the form af(x) where a ∈ Q×. So x2 + 2 is
associate to 3x2 + 6, 1

2x
2 + 1, etc.

Definition 52. An integral domain R is a unique factorization domain if the following conditions hold
for each element a of R that is neither zero nor a unit.

1. a can be written as the product of a finite number of irreducible elements of R.

2. This can be done in an essentially unique way. If a = p1p2 . . .pr and a = q1q2 . . .qs are two
expressions for a as a product of irreducible elements, then s = r and q1, . . . ,qs can be reordered so
that for each i, qi is an associate of pi.

Theorem 53. (Fundamental Theorem of Arithmetic). Z is a UFD.

Proof. Let n be a non-zero non-unit element of Z (we may assume that n is positive after replacing
n with its associate −n if necessary). There are two things to show: that n can be written as a
product of irreducible elements, and that this can be done in a unique way.

For the first part, if n is irreducible then the statement holds. If not, then n = rs for some
positive integers r and s, both strictly less than n. This step can be repeated for r and s - each of
them is either irreducible or the product of two strictly lesser positive integers. This factorization
process cannot contiune indefinitely since the only possible factors are integers in the range 2 to
n and they decrease at each step - so it ends with an description of n as a product of (positive)
irreducible elements (prime numbers).

For the uniqueness, suppose that

n = p1 . . .pt = q1 . . .qs

are alternative expressions for n as products of irreducibles. Then p1 divides the product q1 . . .qs.
Since p1 is irreducible and Z is a PID, p1 is prime. So p1 divides one of the qj. After reordering we
can assume p1|q1, which means p1 = q1 since p1 and q1 are both irreducible. Since Z is an integral
domain, we can cancel p1 from both sides, leaving p2 . . .pt = q2 . . .qs. Continuing in this manner
we deduce that all primes appear with the same multplicity in both expressions.

Remark: In the first part of this proof, we made heavy use of the order relation in Z to argue that
every non-zero non-unit integer is the product of finitely many irreducible elements. We don’t
have an order relation in every integral domain.
In the second part, we used the fact that Z is a PID to conclude that irreducible elements are prime.
If we didn’t know this, we could use the division algorithm/Euclidean algorithm in Z.
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