Euclidean and non-Euclidean Geometry (MA3101) Lecture 13: Geodesics in the Hyperbolic Plane

Dr Rachel Quinlan

November 4, 2024

The hyperbolic plane

Exactly as S^2 : $x^2 + y^2 + z^2 = 1$ is obtained by rotating the unit circle inthe XZ -plane about the Z -axis, we obtain the upper sheet of the hyperboloid $x^2 + y^2 - z^2 = -1$ by rotating \mathcal{H}^1 about the Z-axis. The Lorentz inner product for vectors in \mathbb{R}^3 is defined by

$$
(x_1, y_1, z_1) \cdot_L (x_2, y_2, z_2) = x_1x_2 + y_1y_2 - z_1z_2
$$

 \mathcal{H}^2 , equipped with the Lorentz pseudometric in which the squared length of a vector v is $v \cdot_l v$, is (the hyperboloid model of) the hyperbolic plane. H is the intersection of H^2 with the XZ-plane.

We have a concept of distance in H , defined by

$$
d_{\mathcal{H}}(P,Q) = \cosh^{-1}(-P \cdot_L Q).
$$

This will extend to \mathcal{H}^2 .

\mathcal{H}^2 is homogeneous and isotropic

- 1 Rotation R_θ through any θ about the Z-axis preserves \mathcal{H}^2 and \cdot_L . The matrix of this rotation is $($ \mathcal{L} $\begin{array}{ccc} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{array}$ $\Big)$. Exercise Check directly that $R_{\theta}(u) \cdot_L R_{\theta}(v) = u \cdot_L v$ for all $u, v \in \mathbb{R}^3$. 2 For any $\alpha \in \mathbb{R}$, the translation by α along H extends to an isometry T_{α} of \mathcal{H}^2 , with matrix $\Big($ \mathcal{L} $\begin{matrix} \cosh \alpha & 0 & \sinh \alpha \\ 0 & 1 & 0 \\ \sinh \alpha & 0 & \cosh \alpha \end{matrix}$ $\Big)$.
	- Exercise Check that T_{α} preserves \mathcal{H}^2 and \cdot_L . Note T_{α} sends $(\sinh(-\alpha), 0, \cosh(-\alpha))$ to $(0, 0, 1)$.

Consequence 1 For any point P of \mathcal{H}^2 , there is an isometry τ of \mathcal{H}^2 with $\tau(P) = (0, 0, 1)$. We can apply a rotation about the Z-axis to take P to the XZ-plane, then apply the appropriate T_{α} .

Consequence 2 All points of H^2 are images of each other under isometries. Like S^2 , \mathcal{H}^2 is homogeneous. All points "look the same".

Consequence 3 All directions from (0, 0, 1) are equivalent under the rotation about the Z-axis. So all directions "look the same".

Geodesics in H^2

Geodesics in S^2 are intersections of S^2 with planes through the origin O. The same is true in the hyperboloid model of \mathcal{H}^2 .

Theorem Let P and Q be points of \mathcal{H}^2 . The shortest path (in the hyperbolic distance) from P to Q in \mathcal{H}^2 is along the intersection of \mathcal{H}^2 with the unique plane in \mathcal{R}^2 through \mathcal{P},\mathcal{Q} and $\mathcal{O}.$

A plane that contains the points (0, 0, 1) and O intersects \mathcal{H}^2 in a rotated copy of $\mathcal{H}.$

Other planes intersect \mathcal{H}^2 in curves like the dark red one in this picture.

As for \mathcal{S}^2 , we apply isometries to move P to $(0, 0, 1)$ and Q to a point in the XZ-plane.

As linear transformations of the ambient space \mathbb{R}^3 , these moves take the plane OPQ to the plane $Y = 0$, and take the relevant path from P to Q to a segment of H .

Geodesics are intersections with planes

Theorem Let P and Q be points of \mathcal{H}^2 . The shortest path (in the hyperbolic distance) from P to Q in \mathcal{H}^2 is along the intersection of \mathcal{H}^2 with the unique plane in \mathcal{R}^2 through \mathcal{P},\mathcal{Q} and $\mathcal{O}.$

The proof is analogous to the one for S^2 (see Lecture 7).

- 1. We can assume that $P = (0, 0, 1)$ and $Q = (\sinh \alpha, 0, \cosh \alpha)$.
- 2. Let C be any path in \mathcal{H}^2 from P to Q, parametrized by t.

$$
\mathcal{C}: t\rightarrow (f_1(t),f_2(t),f_3(t)), a\leq t\leq b.
$$

The hyperbolic length of $\mathcal C$ is

$$
\int_{t=a}^{t=b} \sqrt{(f'_1(t))^2 + (f'_2(t))^2 - (f'_3(t))^2} dt
$$

3. To relate f_1, f_2, f_3 to the surface \mathcal{H}^2 , we note that \mathcal{H}^2 is the set of points in \mathbb{R}^3 of the form

 $(\sinh s \cos \theta, \sinh s \sin \theta, \cosh s).$

(Reached by rotating (sinh s, 0, cosh s) through θ about the Z-axis.)

Geodesics are intersections with planes

Theorem Let P and Q be points of \mathcal{H}^2 . The shortest path (in the hyperbolic distance) from P to Q in \mathcal{H}^2 is along the intersection of \mathcal{H}^2 with the unique plane in \mathcal{R}^2 through \mathcal{P},\mathcal{Q} and $\mathcal{O}.$

The proof is analogous to the one for S^2 (see Lecture 7).

4. Rewriting in terms of s and θ

$$
f_1(t) = \sinh s(t) \cos \theta(t) \implies f'_1(t) = \cosh s(t) \cos \theta(t) \dot{s} - \sinh s(t) \sin \theta(t) \dot{\theta}
$$

\n
$$
f_2(t) = \sinh s(t) \sin \theta(t) \implies f'_2(t) = \cosh s(t) \sin \theta(t) \dot{s} + \sinh s(t) \cos \theta(t) \dot{\theta}
$$

\n
$$
f_3(t) = \cosh s(t) \implies f'_3(t) = \sinh s(t) \dot{s}.
$$

5.
$$
(f'_1(t))^2 + (f'_2(t))^2 - (f'_3(t))^2 =
$$

\n $\cosh^2 s(t) \dot{s}^2 + \sinh^2 s(t) \dot{\theta}^2 - \sinh^2 s(t) \dot{s}^2 = \dot{s}^2 + \sinh^2 s(t) \dot{\theta}^2$

6. Now the hyperbolic length of C is $\int_{t=a}^{t=b} \sqrt{\dot{s}^2 + \sinh^2 s \dot{\theta}^2} dt$. This is minimized if $\dot{\theta} = 0$ along C, that is if C is a segment of H.

Intersections of lines in H^2

A line in \mathcal{H}^2 is the intersection of \mathbb{H}^2 with a plane Π through O in $\mathbb{R}^3.$ Not all planes in \mathbb{R}^3 intersect \mathcal{H}^2 , only those with a normal vector that points into the region $z^2 < x^2 + y^2$. These determine the lines of \mathcal{H}^2 . Let H_1 and H_2 be two lines in \mathcal{H}^2 . Then

 $H_1 = \Pi_1 \cap H^2$, $H_2 = \Pi_2 \cap H^2$,

where Π_1 and Π_2 are planes through O in $\mathbb{R}^3.$

The planes Π_1 and Π_2 intersect in \mathbb{R}^3 in a (Euclidean) line L through $O.$ There are two possibilities:

- L intersects \mathcal{H}^2 in exactly one point. Then the lines H_1 and H_2 intersect in \mathcal{H}^2 in one point. This occurs if a vector in the direction of L points into the region $z^2 - (x^2 + y^2) > 0$.
- L does not intersect \mathcal{H}^2 . This means that a vector at O in the direction of L points into the region $z^2 - (x^2 + y^2) \le 0$.

Let H_1 and H_2 be two lines in \mathcal{H}^2 . Then

 $H_1 = \Pi_1 \cap H^2$, $H_2 = \Pi_2 \cap H^2$,

where Π_1 and Π_2 are planes through O in \mathbb{R}^3 .

The planes Π_1 and Π_2 intersect in \mathbb{R}^3 in a (Euclidean) line L through O.

If L does not intersect \mathcal{H}^2 , there are two cases:

- $\bf{1}$ If L is contained in the cone $z^2=x^2+y^2$ (red in the picture), then H_1 and H_2 approach each other at infinity along the "upper part" of L. In this case, H_1 and H_2 are said to be ultraparallel.
- $\overline{2}$ Otherwise, if L does not intersect \mathcal{H}^2 , H_1 and H_2 are said to diverge