
Euclidean and non-Euclidean Geometry (MA3101)
Lecture 13: Geodesics in the Hyperbolic Plane

Dr Rachel Quinlan

November 4, 2024

Dr Rachel Quinlan MA3101 Lecture 12 1 / 7



The hyperbolic plane

Exactly as S2 : x2 + y2 + z2 = 1 is obtained by rotating the unit circle
inthe XZ -plane about the Z -axis, we obtain the upper sheet of the
hyperboloid x2 + y2 − z2 = −1 by rotating H1 about the Z -axis.
The Lorentz inner product for vectors in R3 is defined by

(x1, y1, z1) ·L (x2, y2, z2) = x1x2 + y1y2 − z1z2

H2, equipped with the Lorentz pseudometric in which the squared length
of a vector v is v ·L v , is (the hyperboloid model of) the hyperbolic plane.
H is the intersection of H2 with the
XZ -plane.
We have a concept of distance in H,
defined by

dH(P,Q) = cosh−1(−P ·L Q).

This will extend to H2.
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H2 is homogeneous and isotropic

1 Rotation Rθ through any θ about the Z -axis preserves H2 and ·L.

The matrix of this rotation is
 cos θ − sin θ 0

sin θ cos θ 0
0 0 1

 .

Exercise Check directly that Rθ(u) ·L Rθ(v) = u ·L v for all u, v ∈ R3.

2 For any α ∈ R, the translation by α along H extends to an isometry

Tα of H2, with matrix
 coshα 0 sinhα

0 1 0
sinhα 0 coshα

 .

Exercise Check that Tα preserves H2 and ·L. Note Tα sends
(sinh(−α), 0, cosh(−α)) to (0, 0, 1).

Consequence 1 For any point P of H2, there is an isometry τ of H2 with
τ(P) = (0, 0, 1). We can apply a rotation about the Z -axis to take P to
the XZ -plane, then apply the appropriate Tα.

Consequence 2 All points of H2 are images of each other under
isometries. Like S2, H2 is homogeneous. All points “look the same”.

Consequence 3 All directions from (0, 0, 1) are equivalent under the
rotation about the Z -axis. So all directions “look the same”.
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Geodesics in H2

Geodesics in S2 are intersections of S2 with planes through the origin O.

The same is true in the hyperboloid model of H2.

Theorem Let P and Q be points of H2. The shortest path (in the
hyperbolic distance) from P to Q in H2 is along the intersection of H2

with the unique plane in R2 through P,Q and O.

A plane that contains the points (0, 0, 1)
and O intersects H2 in a rotated copy of H.

Other planes intersect H2 in curves like the
dark red one in this picture.

As for S2, we apply isometries to move P to
(0, 0, 1) and Q to a point in the XZ -plane.

As linear transformations of the ambient space R3, these moves take the
plane OPQ to the plane Y = 0, and take the relevant path from P to Q
to a segment of H.
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Geodesics are intersections with planes

Theorem Let P and Q be points of H2. The shortest path (in the
hyperbolic distance) from P to Q in H2 is along the intersection of H2

with the unique plane in R2 through P,Q and O.

The proof is analogous to the one for S2 (see Lecture 7).

1. We can assume that P = (0, 0, 1) and Q = (sinhα, 0, coshα).

2. Let C be any path in H2 from P to Q, parametrized by t.

C : t → (f1(t), f2(t), f3(t)), a ≤ t ≤ b.

The hyperbolic length of C is∫ t=b

t=a

√
(f ′1(t))2 + (f ′2(t))2 − (f ′3(t))2 dt

3. To relate f1, f2, f3 to the surface H2, we note that H2 is the set of
points in R3 of the form

(sinh s cos θ, sinh s sin θ, cosh s).

(Reached by rotating (sinh s, 0, cosh s) through θ about the Z -axis.)
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Geodesics are intersections with planes

Theorem Let P and Q be points of H2. The shortest path (in the
hyperbolic distance) from P to Q in H2 is along the intersection of H2

with the unique plane in R2 through P,Q and O.

The proof is analogous to the one for S2 (see Lecture 7).

4. Rewriting in terms of s and θ

f1(t) = sinh s(t) cos θ(t) =⇒ f ′1 (t) = cosh s(t) cos θ(t)ṡ − sinh s(t) sin θ(t)θ̇

f2(t) = sinh s(t) sin θ(t) =⇒ f ′2 (t) = cosh s(t) sin θ(t)ṡ + sinh s(t) cos θ(t)θ̇

f3(t) = cosh s(t) =⇒ f ′3 (t) = sinh s(t)ṡ.

5. (f ′1(t))2 + (f ′2(t))2 − (f ′3(t))2 =
cosh2 s(t)ṡ2 + sinh2 s(t)θ̇2 − sinh2 s(t)ṡ2 = ṡ2 + sinh2 s(t)θ̇2

6. Now the hyperbolic length of C is
∫ t=b
t=a

√
ṡ2 + sinh2 s θ̇2 dt.

This is minimized if θ̇ = 0 along C, that is if C is a segment of H.
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Intersections of lines in H2

A line in H2 is the intersection of H2 with a plane Π through O in R3.

Not all planes in R3 intersect H2, only those with a normal vector that
points into the region z2 < x2 + y2. These determine the lines of H2.

Let H1 and H2 be two lines in H2. Then

H1 = Π1 ∩H2, H2 = Π2 ∩H2,

where Π1 and Π2 are planes through O in R3.

The planes Π1 and Π2 intersect in R3 in a (Euclidean) line L through O.

There are two possibilities:

L intersects H2 in exactly one point. Then the lines H1 and H2

intersect in H2 in one point. This occurs if a vector in the direction
of L points into the region z2 − (x2 + y2) > 0.

L does not intersect H2. This means that a vector at O in the
direction of L points into the region z2 − (x2 + y2) ≤ 0.
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Non-intersecting lines in H2.

Let H1 and H2 be two lines in H2. Then

H1 = Π1 ∩H2, H2 = Π2 ∩H2,

where Π1 and Π2 are planes through O in
R3.

The planes Π1 and Π2 intersect in R3 in a
(Euclidean) line L through O.

If L does not intersect H2, there are two cases:

1 If L is contained in the cone z2 = x2 + y2 (red in the picture), then
H1 and H2 approach each other at infinity along the “upper part” of
L. In this case, H1 and H2 are said to be ultraparallel.

2 Otherwise, if L does not intersect H2, H1 and H2 are said to diverge
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