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The hyperbolic plane

Exactly as S? : x2 + y? + z2 = 1 is obtained by rotating the unit circle
inthe XZ-plane about the Z-axis, we obtain the upper sheet of the
hyperboloid x? + y? — z2 = —1 by rotating H! about the Z-axis.

The Lorentz inner product for vectors in R3 is defined by

‘ (x1.y1,21) L (X2, 2, 22) = x1x2 + y1yo — 2122 ‘

H?, equipped with the Lorentz pseudometric in which the squared length
of a vector v is v -y v, is (the hyperboloid model of) the hyperbolic plane.
H is the intersection of H? with the
XZ-plane.
We have a concept of distance in H,
defined by

du(P, Q) = cosh_l(—P 1 Q).

This will extend to H2.
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H? is homogeneous and isotropic

Rotation Ry through any 6 about the Z-axis preserves 72 and ;.
The matrix of this rotation is ( pert A )
0 0 1
Exercise Check directly that Ry(u) L Ry(v) = u- v for all u,v € R3.
For any o € R, the translation by « along H extends to an isometry

T., of #2, with matrix < g e )

sinh v 0 cosh av
Exercise Check that T, preserves 742 and -;. Note T, sends
(sinh(—a), 0, cosh(—a)) to (0,0,1).

Consequence 1 For any point P of H?, there is an isometry 7 of H? with
7(P) = (0,0,1). We can apply a rotation about the Z-axis to take P to
the XZ-plane, then apply the appropriate T,.

Consequence 2 All points of 2 are images of each other under
isometries. Like S2, H? is homogeneous. All points “look the same”.

Consequence 3 All directions from (0, 0, 1) are equivalent under the

rotation about the Z-axis. So all directions “look the same”.
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Geodesics in S? are intersections of S? with planes through the origin O.
The same is true in the hyperboloid model of #2.

Theorem Let P and Q be points of H2. The shortest path (in the
hyperbolic distance) from P to Q in H? is along the intersection of 2
with the unique plane in R? through P, Q and O.

A plane that contains the points (0,0, 1)
and O intersects H? in a rotated copy of H.

Other planes intersect H2 in curves like the
dark red one in this picture.

As for S2, we apply isometries to move P to
(0,0,1) and Q to a point in the XZ-plane.

As linear transformations of the ambient space R3, these moves take the
plane OPQ to the plane Y = 0, and take the relevant path from P to @
to a segment of H.
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Geodesics are intersections with planes

Theorem Let P and Q be points of 2. The shortest path (in the
hyperbolic distance) from P to Q in H2 is along the intersection of 2
with the unique plane in R2 through P, Q and O.

The proof is analogous to the one for S? (see Lecture 7).
1. We can assume that P =(0,0,1) and Q = (sinh «, 0, cosh «).
2. Let C be any path in H? from P to Q, parametrized by t.

C:t— (f(t), (), (1), a<t<b.
The hyperbolic length of C is

t=b
| @R+ @02 - @

3. To relate fi, f, f3 to the surface H2, we note that H? is the set of
points in R3 of the form

(sinh scos @, sinh ssin §, cosh s).

(Reached by rotating (sinh s, 0, cosh s) through 6 about the Z-axis.)
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Geodesics are intersections with planes

Theorem Let P and @ be points of 2. The shortest path (in the
hyperbolic distance) from P to @ in H? is along the intersection of 2
with the unique plane in R? through P, Q and O.

The proof is analogous to the one for S? (see Lecture 7).
4. Rewriting in terms of s and 0

fi(t) = sinhs(t)cosO(t) = £/ (t) = cosh s(t) cos (t)s — sinh s(t)sin ()

f(t) = sinhs(t)sin0(t) = £(t) = cosh s(t)sin(t)s + sinh s(t) cosO(t)0
f3(t) = coshs(t) == f(t) = sinhs(t)s.

5. (f(1))* + (£(1))* = (£(1)* = .
cosh? s(t)s? + sinh? s(t)02 — sinh? s(t)$2 = 2 + sinh? s(t)6?

6. Now the hyperbolic length of C is ft::ab §2 + sinh? 562 dt.
This is minimized if § = 0 along C, that is if C is a segment of H.
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Intersections of lines in 2

A line in H? is the intersection of H? with a plane N through O in R3.

Not all planes in R3 intersect 2, only those with a normal vector that
points into the region z2 < x? 4 y?. These determine the lines of 2.

Let H; and H> be two lines in H2. Then
Hy =Tl ﬂ?‘lz, Hy, = n20%2,

where My and MMy are planes through O in R3.
The planes My and MMy intersect in R3 in a (Euclidean) line L through O.

There are two possibilities:

m L intersects M2 in exactly one point. Then the lines H; and H,
intersect in 42 in one point. This occurs if a vector in the direction
of L points into the region z> — (x* + y?) > 0.

m L does not intersect 2. This means that a vector at O in the
direction of L points into the region z2 — (x? + y?) < 0.
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Non-intersecting lines in 2.

Let H; and H be two lines in H2. Then

H1:|_|1ﬁ7'[2, H2=H2ﬂ7‘[2,

where My and Ty are planes through O in
R3.

The planes My and My intersect in R3 in a
(Euclidean) line L through O.

If L does not intersect H2, there are two cases:

If L is contained in the cone z2 = x? + y? (red in the picture), then
Hy, and H, approach each other at infinity along the “upper part” of
L. In this case, H; and H, are said to be ultraparallel.

Otherwise, if L does not intersect H2, Hy and H, are said to diverge

Dr Rachel Quinlan MA3101 Lecture 12 7/7



