Euclidean and non-Euclidean Geometry (MA3101) Lecture 13: Geodesics in the Hyperbolic Plane

Dr Rachel Quinlan

November 4, 2024

The hyperbolic plane

Exactly as $S^2: x^2 + y^2 + z^2 = 1$ is obtained by rotating the unit circle inthe XZ-plane about the Z-axis, we obtain the upper sheet of the hyperboloid $x^2 + y^2 - z^2 = -1$ by rotating \mathcal{H}^1 about the Z-axis. The Lorentz inner product for vectors in \mathbb{R}^3 is defined by

$$(x_1, y_1, z_1) \cdot_L (x_2, y_2, z_2) = x_1 x_2 + y_1 y_2 - z_1 z_2$$

 \mathcal{H}^2 , equipped with the Lorentz pseudometric in which the squared length of a vector v is $v \cdot_L v$, is (the hyperboloid model of) the hyperbolic plane. \mathcal{H} is the intersection of \mathcal{H}^2 with the XZ-plane.

We have a concept of distance in $\ensuremath{\mathcal{H}}$, defined by

$$d_{\mathcal{H}}(P, Q) = \cosh^{-1}(-P \cdot_L Q).$$

This will extend to \mathcal{H}^2 .

\mathcal{H}^2 is homogeneous and isotropic

 $(\sinh(-\alpha), 0, \cosh(-\alpha))$ to (0, 0, 1).

Consequence 1 For any point P of \mathcal{H}^2 , there is an isometry τ of \mathcal{H}^2 with $\tau(P) = (0, 0, 1)$. We can apply a rotation about the Z-axis to take P to the XZ-plane, then apply the appropriate T_{α} .

Consequence 2 All points of \mathcal{H}^2 are images of each other under isometries. Like S^2 , \mathcal{H}^2 is homogeneous. All points "look the same".

Consequence 3 All directions from (0, 0, 1) are equivalent under the rotation about the *Z*-axis. So all directions "look the same".

Geodesics in \mathcal{H}^2

Geodesics in S^2 are intersections of S^2 with planes through the origin O. The same is true in the hyperboloid model of \mathcal{H}^2 .

Theorem Let P and Q be points of \mathcal{H}^2 . The shortest path (in the hyperbolic distance) from P to Q in \mathcal{H}^2 is along the intersection of \mathcal{H}^2 with the unique plane in \mathbb{R}^2 through P, Q and O.

A plane that contains the points (0, 0, 1)and *O* intersects \mathcal{H}^2 in a rotated copy of \mathcal{H} .

Other planes intersect \mathcal{H}^2 in curves like the dark red one in this picture.

As for S^2 , we apply isometries to move P to (0, 0, 1) and Q to a point in the XZ-plane.

As linear transformations of the ambient space \mathbb{R}^3 , these moves take the plane OPQ to the plane Y = 0, and take the relevant path from P to Q to a segment of \mathcal{H} .

Geodesics are intersections with planes

Theorem Let P and Q be points of \mathcal{H}^2 . The shortest path (in the hyperbolic distance) from P to Q in \mathcal{H}^2 is along the intersection of \mathcal{H}^2 with the unique plane in \mathbb{R}^2 through P, Q and O.

The proof is analogous to the one for S^2 (see Lecture 7).

- 1. We can assume that P = (0, 0, 1) and $Q = (\sinh \alpha, 0, \cosh \alpha)$.
- 2. Let C be any path in \mathcal{H}^2 from P to Q, parametrized by t.

$$\mathcal{C}: t \rightarrow (f_1(t), f_2(t), f_3(t)), a \leq t \leq b.$$

The hyperbolic length of $\ensuremath{\mathcal{C}}$ is

$$\int_{t=a}^{t=b} \sqrt{(f_1'(t))^2 + (f_2'(t))^2 - (f_3'(t))^2 dt}$$

3. To relate f_1 , f_2 , f_3 to the surface \mathcal{H}^2 , we note that \mathcal{H}^2 is the set of points in \mathbb{R}^3 of the form

 $(\sinh s \cos \theta, \sinh s \sin \theta, \cosh s).$

(Reached by rotating (sinh s, 0, cosh s) through θ about the Z-axis.)

Geodesics are intersections with planes

Theorem Let P and Q be points of \mathcal{H}^2 . The shortest path (in the hyperbolic distance) from P to Q in \mathcal{H}^2 is along the intersection of \mathcal{H}^2 with the unique plane in R^2 through P, Q and O.

The proof is analogous to the one for S^2 (see Lecture 7).

4. Rewriting in terms of s and θ

$$\begin{split} f_1(t) &= \sinh s(t) \cos \theta(t) \implies f_1'(t) = \cosh s(t) \cos \theta(t) \dot{s} - \sinh s(t) \sin \theta(t) \dot{\theta} \\ f_2(t) &= \sinh s(t) \sin \theta(t) \implies f_2'(t) = \cosh s(t) \sin \theta(t) \dot{s} + \sinh s(t) \cos \theta(t) \dot{\theta} \\ f_3(t) &= \cosh s(t) \implies f_3'(t) = \sinh s(t) \dot{s}. \end{split}$$

5.
$$(f'_1(t))^2 + (f'_2(t))^2 - (f'_3(t))^2 = \cosh^2 s(t)\dot{s}^2 + \sinh^2 s(t)\dot{\theta}^2 - \sinh^2 s(t)\dot{s}^2 = \dot{s}^2 + \sinh^2 s(t)\dot{\theta}^2$$

6. Now the hyperbolic length of C is $\int_{t=a}^{t=b} \sqrt{\dot{s}^2 + \sinh^2 s \dot{\theta}^2} dt$. This is minimized if $\dot{\theta} = 0$ along C, that is if C is a segment of \mathcal{H} .

Intersections of lines in \mathcal{H}^2

A line in \mathcal{H}^2 is the intersection of \mathbb{H}^2 with a plane Π through O in \mathbb{R}^3 . Not all planes in \mathbb{R}^3 intersect \mathcal{H}^2 , only those with a normal vector that points into the region $z^2 < x^2 + y^2$. These determine the lines of \mathcal{H}^2 . Let H_1 and H_2 be two lines in \mathcal{H}^2 . Then

 $H_1 = \Pi_1 \cap \mathcal{H}^2, \ H_2 = \Pi_2 \cap \mathcal{H}^2,$

where Π_1 and Π_2 are planes through O in \mathbb{R}^3 .

The planes Π_1 and Π_2 intersect in \mathbb{R}^3 in a (Euclidean) line *L* through *O*. There are two possibilities:

- L intersects H² in exactly one point. Then the lines H₁ and H₂ intersect in H² in one point. This occurs if a vector in the direction of L points into the region z² − (x² + y²) > 0.
- L does not intersect \mathcal{H}^2 . This means that a vector at O in the direction of L points into the region $z^2 (x^2 + y^2) \le 0$.

Let H_1 and H_2 be two lines in \mathcal{H}^2 . Then

 $H_1 = \Pi_1 \cap \mathcal{H}^2, \ H_2 = \Pi_2 \cap \mathcal{H}^2,$

where Π_1 and Π_2 are planes through O in \mathbb{R}^3 .

The planes Π_1 and Π_2 intersect in \mathbb{R}^3 in a (Euclidean) line *L* through *O*.

If *L* does not intersect \mathcal{H}^2 , there are two cases:

- 1 If L is contained in the cone $z^2 = x^2 + y^2$ (red in the picture), then H_1 and H_2 approach each other at infinity along the "upper part" of L. In this case, H_1 and H_2 are said to be ultraparallel.
- 2 Otherwise, if L does not intersect \mathcal{H}^2 , H_1 and H_2 are said to diverge

