3.4 Lecture 12: The Fundamental Homomophism Theorem

If $\phi : \mathbb{R} \longrightarrow S$ is a ring homomorphism, then the image of ϕ is basically a copy of the factor ring R/ ker φ. To give a precise meaning to "basically a copy of", we need a few concepts and words.

Definition 43. Let ϕ : R \longrightarrow S *be a ring homomorphism. Then* ϕ *is called an isomorphism if*

- *1.* $φ$ *is surjective (onto); i.e.* Im $φ = S$ *, and*
- *2.* φ *is injective (one-to-one) i.e.* $\phi(\mathbf{r}_1) \neq \phi(\mathbf{r}_2)$ *whenever* $\mathbf{r}_1 \neq \mathbf{r}_2$ *in* R.

NOTE: φ is injective if and only if ker φ is the zero ideal of R. To see this, first suppose ϕ is injective. Then ker $\phi = \{0_R\}$, otherwise if $r \in \text{ker } \phi$ for some $r \neq 0$ we would have $\phi(r) = \phi(0_R)$, contrary to the injectivity of φ.

On the other hand suppose ker $\phi = \{0_R\}$. Then if there exist elements r_1 and r_2 of R with $\phi(r_1) = \phi(r_2)$ we must have $\phi(r_1 - r_2) = \phi(r_1) - \phi(r_2) = 0_S$. This means $r_1 - r_2 \in \text{ker } \phi$, so $r_1 - r_2 = 0_R$ and ϕ is injective.

The characterisation of injectivity in the above note can be very useful.

If $\phi : \mathbb{R} \longrightarrow S$ is an isomorphism, then S is an "exact copy" of R. This means that S and R are structurally identical, and only differ in the way their elements are labelled. We say that R and S are *isomorphic* and write R ≅ S.

Theorem 44. *(The Fundamental Homomorphism Theorem) Let* ϕ : R → S *be a homomorphism of rings. Then the image of* φ *is isomorphic to the factor ring* R/ ker φ*.*

Proof: Let I be the kernel of ϕ , so I is a two-sided ideal of R. Define a function $\bar{\phi}$: R/I \longrightarrow Im ϕ by

$$
\bar{\varphi}(\alpha+I)=\varphi(\alpha) \text{ for } \alpha\in R.
$$

- 1. $\bar{\phi}$ is well-defined (i.e. the image of $a+I$ does not depend on a choice of coset representative). Suppose that $a + I = a_1 + I$ for some $a, a_1 \in R$. Then $a - a_1 \in I$ by Lemma 42. Hence $\phi(\mathfrak{a}-\mathfrak{a}_1)=0_S=\phi(\mathfrak{a})-\phi(\mathfrak{a}_1)$. Thus $\phi(\mathfrak{a})=\phi(\mathfrak{a}_1)$ as required.
- 2. $\bar{\phi}$ is a ring homomorphism. Suppose $a + I$, $b + I$ are elements of R/I. Then

$$
\begin{array}{rcl}\n\bar{\Phi} ((a + I) + (b + I)) & = & \bar{\Phi} ((a + b) + I) \\
& = & \phi(a + b) \\
& = & \phi(a) + \phi(b) \\
& = & \bar{\phi}(a + I) + \bar{\phi}(b + I).\n\end{array}
$$

So $φ$ is additive.

Also

$$
\begin{array}{rcl}\n\bar{\Phi} \left((a+I)(b+I) \right) & = & \bar{\Phi}(ab+I) \\
& = & \phi(ab) \\
& = & \phi(a)\phi(b) \\
& = & \bar{\phi}(a+I)\bar{\phi}(b+I).\n\end{array}
$$

So $\bar{\Phi}$ is multiplicative - $\bar{\Phi}$ is a ring homomorphism.

3. $\bar{\phi}$ is injective.

Suppose $a + I \in \text{ker } \bar{\phi}$. Then $\bar{\phi}(a + I) = 0_S$ so $\phi(a) = 0_S$. This means $a \in \text{ker } \phi$, so $a \in I$. Then $a + I = I = 0_R + I$, $a + I$ is the zero element of R/I. Thus ker $\bar{\phi}$ contains only the zero element of R/I.

4. $\bar{\Phi}$ is surjective.

Let $s \in \text{Im}\phi$. Then $s = \phi(r)$ for some $r \in R$. Thus $s = \bar{\phi}(r + I)$ and every element of Im ϕ is the image under $\bar{\phi}$ of some coset of I in R.

Thus $\bar{\phi}$: R/ ker $\phi \rightarrow$ Im ϕ is a ring isomorphism, and Im ϕ is isomorphic to the factor ring R/ ker ϕ . $R/\ker \phi$.