3.4 Lecture 12: The Fundamental Homomophism Theorem

If $\phi : \mathbb{R} \longrightarrow S$ is a ring homomorphism, then the image of ϕ is basically a copy of the factor ring $\mathbb{R}/\ker \phi$. To give a precise meaning to "basically a copy of", we need a few concepts and words.

Definition 43. Let ϕ : $R \longrightarrow S$ be a ring homomorphism. Then ϕ is called an isomorphism if

- 1. ϕ *is surjective (onto); i.e.* Im ϕ = S, and
- 2. ϕ is injective (one-to-one) i.e. $\phi(r_1) \neq \phi(r_2)$ whenever $r_1 \neq r_2$ in R.

NOTE: ϕ is injective if and only if ker ϕ is the zero ideal of R. To see this, first suppose ϕ is injective. Then ker $\phi = \{0_R\}$, otherwise if $r \in \ker \phi$ for some $r \neq 0$ we would have $\phi(r) = \phi(0_R)$, contrary to the injectivity of ϕ .

On the other hand suppose ker $\phi = \{0_R\}$. Then if there exist elements r_1 and r_2 of R with $\phi(r_1) = \phi(r_2)$ we must have $\phi(r_1 - r_2) = \phi(r_1) - \phi(r_2) = 0_S$. This means $r_1 - r_2 \in \ker \phi$, so $r_1 - r_2 = 0_R$ and ϕ is injective.

The characterisation of injectivity in the above note can be very useful.

If ϕ : R \longrightarrow S is an isomorphism, then S is an "exact copy" of R. This means that S and R are structurally identical, and only differ in the way their elements are labelled. We say that R and S are *isomorphic* and write R \cong S.

Theorem 44. (*The Fundamental Homomorphism Theorem*) Let $\phi : \mathbb{R} \longrightarrow S$ be a homomorphism of rings. *Then the image of* ϕ *is isomorphic to the factor ring* $\mathbb{R}/\ker \phi$.

Proof: Let I be the kernel of ϕ , so I is a two-sided ideal of R. Define a function $\overline{\phi} : R/I \longrightarrow Im\phi$ by

$$\overline{\Phi}(\mathfrak{a} + I) = \Phi(\mathfrak{a})$$
 for $\mathfrak{a} \in \mathsf{R}$.

- 1. $\overline{\varphi}$ is well-defined (i.e. the image of a+I does not depend on a choice of coset representative). Suppose that $a + I = a_1 + I$ for some $a, a_1 \in R$. Then $a - a_1 \in I$ by Lemma 42. Hence $\varphi(a - a_1) = 0_S = \varphi(a) - \varphi(a_1)$. Thus $\varphi(a) = \varphi(a_1)$ as required.
- 2. $\overline{\Phi}$ is a ring homomorphism. Suppose a + I, b + I are elements of R/I. Then

$$\begin{split} \bar{\varphi}\left((a+I)+(b+I)\right) &= \bar{\varphi}\left((a+b)+I\right) \\ &= \varphi(a+b) \\ &= \varphi(a)+\varphi(b) \\ &= \bar{\varphi}(a+I)+\bar{\varphi}(b+I). \end{split}$$

So ϕ is additive.

Also

$$\begin{split} \bar{\Phi} \left((a+I)(b+I) \right) &= \bar{\Phi}(ab+I) \\ &= \phi(ab) \\ &= \phi(a)\phi(b) \\ &= \bar{\Phi}(a+I)\bar{\Phi}(b+I). \end{split}$$

So $\overline{\Phi}$ is multiplicative - $\overline{\Phi}$ is a ring homomorphism.

3. ϕ is injective.

Suppose $a + I \in \ker \overline{\phi}$. Then $\overline{\phi}(a + I) = 0_S$ so $\phi(a) = 0_S$. This means $a \in \ker \phi$, so $a \in I$. Then $a + I = I = 0_R + I$, a + I is the zero element of R/I. Thus ker $\overline{\phi}$ contains only the zero element of R/I. 4. $\bar{\Phi}$ is surjective.

Let $s \in \text{Im}\phi$. Then $s = \phi(r)$ for some $r \in R$. Thus $s = \overline{\phi}(r + I)$ and every element of Im ϕ is the image under $\overline{\phi}$ of some coset of I in R.

Thus $\overline{\varphi}: R/\ker \varphi \longrightarrow Im\varphi$ is a ring isomorphism, and $Im\varphi$ is isomorphic to the factor ring $R/\ker \varphi$.