2.4 Lecture 9: Irreducibility in $\mathbb{Q}[X]$ and $\mathbb{Z}[X]$

Corollary 27. *Suppose* $f(X)$ *is a polynomial of degree* ≥ 2 *in* $\mathbb{Z}[X]$ *. Then* $f(X)$ *has a proper factorization in* Q[X] *if and only if it has a proper factorization in* Z[X]*, with factors of the same degrees.*

This means : if $f(X)$ can be properly factorized in $\mathbb{Q}[X]$ it can also be properly factorized in $\mathbb{Z}[X]$; if it can be written as the product of two polynomials of degree ≥ 1 with rational coefficients, it can be written as the product of two such polynomials with *integer* coefficients.

Proof: \Leftarrow : This direction is obvious, since any factorization in $\mathbb{Z}[X]$ is a factorization in $\mathbb{Q}[X]$. \implies : First assume that $f(X)$ is primitive in $\mathbb{Z}[X]$.

Suppose that $f(X) = g_1(X)h_1(X)$ where $g_1(X)$ and $h_1(X)$ are polynomials of degree $k \geq 1$ and $m \geq 1$ 1 in $\mathbb{Q}[X]$. Then there are integers a_1 and b_1 for which $a_1g_1(X)$ and $b_1h_1(X)$ are elements of $\mathbb{Z}[X]$, both of degree at least 1. Let d_1 and d_2 denote the greatest common divisors of the coefficients in $a_1q_1(X)$ and $b_1h_1(X)$ respectively. Then $(a_1/d_1)q_1(X)$ and $(b_1/d_2)h_1(X)$ are primitive polynomials in $\mathbb{Z}[X]$. Call these polynomials $q(X)$ and $h(X)$ respectively, and let a and b denote the rational numbers a_1/d_1 and b_1/d_2 . Now

$$
f(X) = g_1(X)h_1(X) \Longrightarrow abf(X) = ag_1(X)bh_1(X) = g(X)h(X).
$$

Since $g(X)h(X) \in \mathbb{Z}[X]$ and $f(X)$ is primitive it follows that ab is an integer. Furthermore since $g(X)h(X)$ is primitive by Theorem 26, $abf(X)$ is primitive. This means $ab = 1$ or -1 . Now either $ab = 1$ and $f(X) = g(X)h(X)$ or $ab = -1$ and $f(X) = (-g(X))h(X)$. Thus $f(X)$ factorizes in $\mathbb{Z}[X]$.

Finally, if $f(X)$ is not primitive we can write $f(X) = df_1(X)$ where d is the gcd of the coefficients in $f(X)$ and $f_1(X)$ is primitive. By Lemma 24 $f(X)$ is irreducible in $\mathbb{Q}[X]$ if and only if $f_1(X)$ is. By the above, $f_1(X)$ factorizes in $\mathbb{Q}[X]$ if and only if it factorizes in $\mathbb{Z}[X]$. Finally, $f(X)$ clearly factorizes in $\mathbb{Z}[X]$ if $f_1(X)$ does.

Theorem 26 and Corollary 27 make the reducibility question in $\mathbb{Q}[X]$ much easier.

Theorem 28. Let $f(X) = a_n X^n + \cdots + a_1 X + a_0$ be a polynomial of degree $n \ge 2$ in $\mathbb{Z}[X]$, with $a_0 \ne 0$. If f(X) *has a root in* Q *this root has the form* b/a *where* a *and* b *are integers (positive or negative) for which* $b|a_0$ *and* $a|a_n$.

Proof: By Theorem 21, $f(X)$ has a root in \mathbb{Q} only if $f(X)$ has a linear factor in $\mathbb{Q}[X]$. By Corollary 27 this happens only if

$$
f(X)=(aX+b)(g(X))
$$

where $a, b \in \mathbb{Z}$, $a \neq 0$ and $q(X) \in \mathbb{Z}[X]$. Then if

$$
g(X) = c_{n-1}X^{n-1} + \cdots + c_1X + c_0,
$$

we have $ac_{n-1} = a_n$ and $b_0c_0 = a_0$. Thus $a|a_n$, $b|a_0$ and $-b/a$ is a root of $f(X)$ in \mathbb{Q} .

Example: Let $f(X) = \frac{3}{5}X^3 + 2X - 1$ in $\mathbb{Q}[X]$. Determine if $f(X)$ is irreducible in $\mathbb{Q}[X]$.

Solution: By Lemma 24 f(X) is irreducible in $\mathbb{O}[X]$ if and only if $5f(X) = 3X^3 + 10X - 5$ is irreducible. By Theorem 23 this would mean having no root in $\mathbb Q$. By Theorem 28 possible roots of 5f(X) in $\mathbb Q$ are

$$
1, -1, 5, -5, \frac{1}{3}, -\frac{1}{3}, \frac{5}{3}, -\frac{5}{3}.
$$

It is easily checked that none of these is a root. Since $f(X)$ is cubic it follows that $f(X)$ is irreducible in $\mathbb{Q}[X]$.

Note: A polynomial is called *monic* if its leading coefficient is 1. If f(X) is a monic polynomial in $\mathbb{Z}[X]$ then any rational roots of $f(X)$ are integer divisors of the constant term (provided that this is not zero).

Example: Decide if the polynomial $f(X) = X^5 + 3X^4 - 3X^3 - 8X^2 + 3X - 2$ is irreducible in $\mathbb{Q}[X]$.

Solution : Possible rational roots of f(X) are integer divisors of the constant term −2 - i.e. 1, −1, 2, −2. Inspection of these possibilities reveals that -2 is a root. Thus $f(X)$ is reducible in $\mathbb{Q}[X]$.

Note: Since $f(X)$ has degree 5, a discovery that $f(X)$ had no rational roots would not have told us anything about the irreducibility or not of $f(X)$ over $\mathbb Q$.

There is one known criterion for irreducibility over $\mathbb Q$ that applies to polynomials of high degree, but it only applies to polynomials with a special property.

Theorem 29. *(The Eisenstein irreducibility Criterion) Let* $f(X) = a_n X^n + \cdots + a_1 X + a_0$ *be a polynomial in* $\mathbb{Z}[X]$ *where* $a_n \neq 0$ *, and* $n \geq 2$ *. Suppose that there exists a prime number* p *for which*

- p *divides all of* $a_0, a_1, \ldots, a_{n-1}$
- p *does not divide* aⁿ
- p^2 *does not divide* a_0 .

Then $f(X)$ *is irreducible in* $\mathbb{Q}[X]$ *.*

For example the Eisenstein test says that $2X^4 - 3X^3 + 6X^2 - 12X + 3$ is irreducible in $\mathbb{Q}[X]$ since the prime 3 divides all the coefficients except the leading one, and 9 does not divide the constant term.

Proof of Theorem 29: Assume (in the hope of contradiction) that $f(X)$ is reducible and write

$$
f(X)=(\underbrace{b_sX^s+\cdots+b_1X+b_0}_{g(X)})(\underbrace{c_tX^t+\cdots+c_1X+c_0}_{h(X)})
$$

where $g(X)$, $h(X) \in \mathbb{Z}[X]$, $b_s \neq 0$, $c_t \neq 0$, $s \geq 1$, $t \geq 1$ and $s + t = n$.

Now $b_0c_0 = a_0$ which means p divides exactly one of b_0 and c_0 , as p^2 does not divide a_0 . Suppose p|b₀ and p $/c_0$. Now $a_1 = b_1c_0 + b_0c_1$, which means p|b₁ since p divides a_1 and b_0 but not c_0 . Similarly looking at a_2 shows that p must divide b₂. However p does not divide all the b_i - it does not divide b_s , otherwise it would divide $a_n = b_s c_t$.

Now let k be the least for which p $/b_k$. Then $k \leq s \Longrightarrow k < n$ and

$$
a_k = b_k c_0 + \underbrace{b_{k-1} c_1 + \cdots + b_0 c_k}_{\text{all multiplesof } p}
$$

Now p $\sqrt{b_kc_0}$ since p $\sqrt{b_k}$ and p $\sqrt{c_0}$. Since the remaining terms in the above description of a_k are all multiples of p, it follows that p $/\alpha_k$, contrary to hypothesis.

We conclude that any polynomial in $\mathbb{Z}[X]$ satisfying the hypotheses of the theorem is irreducible in $\mathbb{Q}[X]$.

Note: Theorem 29 says nothing at all about polynomials in Z[X] for which no prime satisfies the requirements in the statement.