
2.4 Lecture 9: Irreducibility in Q[X] and Z[X]
Corollary 27. Suppose f(X) is a polynomial of degree � 2 in Z[X]. Then f(X) has a proper factorization
in Q[X] if and only if it has a proper factorization in Z[X], with factors of the same degrees.

This means : if f(X) can be properly factorized in Q[X] it can also be properly factorized in Z[X];
if it can be written as the product of two polynomials of degree � 1 with rational coefficients, it
can be written as the product of two such polynomials with integer coefficients.
Proof: ⇐= : This direction is obvious, since any factorization in Z[X] is a factorization in Q[X].
=⇒ : First assume that f(X) is primitive in Z[X].
Suppose that f(X) = g1(X)h1(X) where g1(X) and h1(X) are polynomials of degree k � 1 and m �
1 in Q[X]. Then there are integers a1 and b1 for which a1g1(X) and b1h1(X) are elements of Z[X],
both of degree at least 1. Let d1 and d2 denote the greatest common divisors of the coefficients in
a1g1(X) and b1h1(X) respectively. Then (a1/d1)g1(X) and (b1/d2)h1(X) are primitive polynomials
in Z[X]. Call these polynomials g(X) and h(X) respectively, and let a and b denote the rational
numbers a1/d1 and b1/d2. Now

f(X) = g1(X)h1(X) =⇒ abf(X) = ag1(X)bh1(X) = g(X)h(X).

Since g(X)h(X) ∈ Z[X] and f(X) is primitive it follows that ab is an integer. Furthermore since
g(X)h(X) is primitive by Theorem 26, abf(X) is primitive. This means ab = 1 or − 1. Now either
ab = 1 and f(X) = g(X)h(X) or ab = −1 and f(X) = (−g(X))h(X). Thus f(X) factorizes in Z[X].

Finally, if f(X) is not primitive we can write f(X) = df1(X) where d is the gcd of the coefficients
in f(X) and f1(X) is primitive. By Lemma 24 f(X) is irreducible in Q[X] if and only if f1(X) is. By
the above, f1(X) factorizes in Q[X] if and only if it factorizes in Z[X]. Finally, f(X) clearly factorizes
in Z[X] if f1(X) does. �

Theorem 26 and Corollary 27 make the reducibility question in Q[X] much easier.

Theorem 28. Let f(X) = anX
n+ · · ·+a1X+a0 be a polynomial of degree n � 2 in Z[X], with a0 �= 0. If

f(X) has a root in Q this root has the form b/a where a and b are integers (positive or negative) for which
b|a0 and a|an.

Proof: By Theorem 21, f(X) has a root in Q only if f(X) has a linear factor in Q[X]. By Corollary 27
this happens only if

f(X) = (aX+ b)(g(X))

where a,b ∈ Z, a �= 0 and g(X) ∈ Z[X]. Then if

g(X) = cn−1X
n−1 + · · ·+ c1X+ c0,

we have acn−1 = an and b0c0 = a0. Thus a|an, b|a0 and −b/a is a root of f(X) in Q. �

Example: Let f(X) = 3
5X

3 + 2X− 1 in Q[X]. Determine if f(X) is irreducible in Q[X].

Solution: By Lemma 24 f(X) is irreducible in Q[X] if and only if 5f(X) = 3X3+10X−5 is irreducible.
By Theorem 23 this would mean having no root in Q. By Theorem 28 possible roots of 5f(X) in Q
are

1,−1, 5,−5,
1
3

,−
1
3

,
5
3

,−
5
3

.

It is easily checked that none of these is a root. Since f(X) is cubic it follows that f(X) is irreducible
in Q[X].

Note: A polynomial is called monic if its leading coefficient is 1. If f(X) is a monic polynomial in
Z[X] then any rational roots of f(X) are integer divisors of the constant term (provided that this is
not zero).

Example: Decide if the polynomial f(X) = X5 + 3X4 − 3X3 − 8X2 + 3X− 2 is irreducible in Q[X].
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Solution : Possible rational roots of f(X) are integer divisors of the constant term −2 - i.e. 1,−1, 2,−2.
Inspection of these possibilities reveals that −2 is a root. Thus f(X) is reducible in Q[X].

Note: Since f(X) has degree 5, a discovery that f(X) had no rational roots would not have told us
anything about the irreducibility or not of f(X) over Q.

There is one known criterion for irreducibility over Q that applies to polynomials of high
degree, but it only applies to polynomials with a special property.

Theorem 29. (The Eisenstein irreducibility Criterion) Let f(X) = anX
n+ · · ·+a1X+a0 be a polynomial

in Z[X] where an �= 0, and n � 2. Suppose that there exists a prime number p for which

• p divides all of a0,a1, . . . ,an−1

• p does not divide an

• p2 does not divide a0.

Then f(X) is irreducible in Q[X].

For example the Eisenstein test says that 2X4 − 3X3 + 6X2 − 12X+ 3 is irreducible in Q[X] since
the prime 3 divides all the coefficients except the leading one, and 9 does not divide the constant
term.

Proof of Theorem 29: Assume (in the hope of contradiction) that f(X) is reducible and write

f(X) = (bsX
s + · · ·+ b1X+ b0� �� �

g(X)

)(ctX
t + · · ·+ c1X+ c0� �� �

h(X)

)

where g(X),h(X) ∈ Z[X], bs �= 0, ct �= 0, s � 1, t � 1 and s+ t = n.
Now b0c0 = a0 which means p divides exactly one of b0 and c0, as p2 does not divide a0.

Suppose p|b0 and p � |c0. Now a1 = b1c0 + b0c1, which means p|b1 since p divides a1 and b0 but
not c0. Similarly looking at a2 shows that p must divide b2. However p does not divide all the bi

- it does not divide bs, otherwise it would divide an = bsct.
Now let k be the least for which p � |bk. Then k � s =⇒ k < n and

ak = bkc0 + bk−1c1 + · · ·+ b0ck� �� �
all multiplesof p

Now p � |bkc0 since p � |bk and p � |c0. Since the remaining terms in the above description of ak are
all multiples of p, it follows that p � |ak, contrary to hypothesis.

We conclude that any polynomial in Z[X] satisfying the hypotheses of the theorem is irre-
ducible in Q[X]. �

Note: Theorem 29 says nothing at all about polynomials in Z[X] for which no prime satisfies the
requirements in the statement.
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