2.4 Lecture 9: Irreducibility in $\mathbb{Q}[X]$ and $\mathbb{Z}[X]$

Corollary 27. Suppose f(X) is a polynomial of degree ≥ 2 in $\mathbb{Z}[X]$. Then f(X) has a proper factorization in $\mathbb{Q}[X]$ if and only if it has a proper factorization in $\mathbb{Z}[X]$, with factors of the same degrees.

This means : if f(X) can be properly factorized in $\mathbb{Q}[X]$ it can also be properly factorized in $\mathbb{Z}[X]$; if it can be written as the product of two polynomials of degree $\geqslant 1$ with rational coefficients, it can be written as the product of two such polynomials with *integer* coefficients.

Proof: \Leftarrow : This direction is obvious, since any factorization in $\mathbb{Z}[X]$ is a factorization in $\mathbb{Q}[X]$. \Rightarrow : First assume that f(X) is primitive in $\mathbb{Z}[X]$.

Suppose that $f(X) = g_1(X)h_1(X)$ where $g_1(X)$ and $h_1(X)$ are polynomials of degree $k \geqslant 1$ and $m \geqslant 1$ in $\mathbb{Q}[X]$. Then there are integers a_1 and b_1 for which $a_1g_1(X)$ and $b_1h_1(X)$ are elements of $\mathbb{Z}[X]$, both of degree at least 1. Let d_1 and d_2 denote the greatest common divisors of the coefficients in $a_1g_1(X)$ and $b_1h_1(X)$ respectively. Then $(a_1/d_1)g_1(X)$ and $(b_1/d_2)h_1(X)$ are primitive polynomials in $\mathbb{Z}[X]$. Call these polynomials g(X) and h(X) respectively, and let a and b denote the rational numbers a_1/d_1 and b_1/d_2 . Now

$$f(X) = g_1(X)h_1(X) \Longrightarrow abf(X) = ag_1(X)bh_1(X) = g(X)h(X).$$

Since $g(X)h(X) \in \mathbb{Z}[X]$ and f(X) is primitive it follows that ab is an integer. Furthermore since g(X)h(X) is primitive by Theorem 26, abf(X) is primitive. This means ab = 1 or -1. Now either ab = 1 and f(X) = g(X)h(X) or ab = -1 and f(X) = (-g(X))h(X). Thus f(X) factorizes in $\mathbb{Z}[X]$.

Finally, if f(X) is not primitive we can write $f(X) = df_1(X)$ where d is the gcd of the coefficients in f(X) and $f_1(X)$ is primitive. By Lemma 24 f(X) is irreducible in $\mathbb{Q}[X]$ if and only if $f_1(X)$ is. By the above, $f_1(X)$ factorizes in $\mathbb{Q}[X]$ if and only if it factorizes in $\mathbb{Z}[X]$. Finally, f(X) clearly factorizes in $\mathbb{Z}[X]$ if $f_1(X)$ does.

Theorem 26 and Corollary 27 make the reducibility question in $\mathbb{Q}[X]$ much easier.

Theorem 28. Let $f(X) = a_n X^n + \cdots + a_1 X + a_0$ be a polynomial of degree $n \ge 2$ in $\mathbb{Z}[X]$, with $a_0 \ne 0$. If f(X) has a root in \mathbb{Q} this root has the form b/a where a and b are integers (positive or negative) for which $b|a_0$ and $a|a_n$.

Proof: By Theorem 21, f(X) has a root in \mathbb{Q} only if f(X) has a linear factor in $\mathbb{Q}[X]$. By Corollary 27 this happens only if

$$f(X) = (aX + b)(g(X))$$

where $a,b\in\mathbb{Z},\ a\neq 0$ and $g(X)\in\mathbb{Z}[X].$ Then if

$$q(X) = c_{n-1}X^{n-1} + \cdots + c_1X + c_0$$

we have $ac_{n-1} = a_n$ and $b_0c_0 = a_0$. Thus $a|a_n$, $b|a_0$ and -b/a is a root of f(X) in \mathbb{Q} .

Example: Let $f(X) = \frac{3}{5}X^3 + 2X - 1$ in $\mathbb{Q}[X]$. Determine if f(X) is irreducible in $\mathbb{Q}[X]$.

Solution: By Lemma 24 f(X) is irreducible in $\mathbb{Q}[X]$ if and only if $5f(X) = 3X^3 + 10X - 5$ is irreducible. By Theorem 23 this would mean having no root in \mathbb{Q} . By Theorem 28 possible roots of 5f(X) in \mathbb{Q} are

$$1, -1, 5, -5, \frac{1}{3}, -\frac{1}{3}, \frac{5}{3}, -\frac{5}{3}$$

It is easily checked that none of these is a root. Since f(X) is cubic it follows that f(X) is irreducible in $\mathbb{Q}[X]$.

Note: A polynomial is called *monic* if its leading coefficient is 1. If f(X) is a monic polynomial in $\mathbb{Z}[X]$ then any rational roots of f(X) are integer divisors of the constant term (provided that this is not zero).

Example: Decide if the polynomial $f(X) = X^5 + 3X^4 - 3X^3 - 8X^2 + 3X - 2$ is irreducible in $\mathbb{Q}[X]$.

Solution : Possible rational roots of f(X) are integer divisors of the constant term -2 - i.e. 1, -1, 2, -2. Inspection of these possibilities reveals that -2 is a root. Thus f(X) is reducible in $\mathbb{Q}[X]$.

Note: Since f(X) has degree 5, a discovery that f(X) had no rational roots would not have told us anything about the irreducibility or not of f(X) over \mathbb{Q} .

There is one known criterion for irreducibility over \mathbb{Q} that applies to polynomials of high degree, but it only applies to polynomials with a special property.

Theorem 29. (The Eisenstein irreducibility Criterion) Let $f(X) = a_n X^n + \cdots + a_1 X + a_0$ be a polynomial in $\mathbb{Z}[X]$ where $a_n \neq 0$, and $n \geq 2$. Suppose that there exists a prime number \mathfrak{p} for which

- p divides all of $a_0, a_1, \ldots, a_{n-1}$
- p does not divide a_n
- p^2 does not divide a_0 .

Then f(X) is irreducible in $\mathbb{Q}[X]$.

For example the Eisenstein test says that $2X^4 - 3X^3 + 6X^2 - 12X + 3$ is irreducible in $\mathbb{Q}[X]$ since the prime 3 divides all the coefficients except the leading one, and 9 does not divide the constant term.

Proof of Theorem 29: Assume (in the hope of contradiction) that f(X) is reducible and write

$$f(X) = (\underbrace{b_s X^s + \dots + b_1 X + b_0}_{g(X)}) (\underbrace{c_t X^t + \dots + c_1 X + c_0}_{h(X)})$$

where g(X), $h(X) \in \mathbb{Z}[X]$, $b_s \neq 0$, $c_t \neq 0$, $s \geqslant 1$, $t \geqslant 1$ and s + t = n.

Now $b_0c_0 = a_0$ which means p divides exactly one of b_0 and c_0 , as p^2 does not divide a_0 . Suppose $p|b_0$ and $p \not | c_0$. Now $a_1 = b_1c_0 + b_0c_1$, which means $p|b_1$ since p divides a_1 and b_0 but not c_0 . Similarly looking at a_2 shows that p must divide b_2 . However p does not divide all the b_i - it does not divide b_s , otherwise it would divide $a_n = b_s c_t$.

Now let k be the least for which p b_k . Then $k \le s \Longrightarrow k < n$ and

$$\alpha_k = b_k c_0 + \underbrace{b_{k-1} c_1 + \dots + b_0 c_k}_{\text{all multiplesof p}}$$

Now $\mathfrak{p} \not b_k c_0$ since $\mathfrak{p} \not b_k$ and $\mathfrak{p} \not c_0$. Since the remaining terms in the above description of \mathfrak{a}_k are all multiples of \mathfrak{p} , it follows that $\mathfrak{p} \not a_k$, contrary to hypothesis.

We conclude that any polynomial in $\mathbb{Z}[X]$ satisfying the hypotheses of the theorem is irreducible in $\mathbb{Q}[X]$.

Note: Theorem 29 says nothing at all about polynomials in $\mathbb{Z}[X]$ for which no prime satisfies the requirements in the statement.