2.3 Lecture 8: Reducible and Irreducible Polynomials

Theorem 21. (*The Factor Theorem*) Let f(X) be a polynomial of degree $n \ge 1$ in $\mathbb{F}[X]$ and let $\alpha \in \mathbb{F}$. Then α is a root of f(X) if and only if $X - \alpha$ divides f(X) in $\mathbb{F}[X]$.

Proof: By the division algorithm (Theorem 18), we can write

$$f(X) = q(X)(X - \alpha) + r(X)$$

where $q(X) \in \mathbb{F}[X]$ and either r(X) = 0 or r(X) has degree zero and is thus a non-zero element of \mathbb{F} . So $r(X) \in \mathbb{F}$; we can write $r(X) = \beta$. Now

$$f(\alpha) = q(\alpha)(\alpha - \alpha) + \beta$$

= 0 + \beta
= \beta.

Thus $f(\alpha) = 0$ if and only if $\beta = 0$, i.e. if and only if r(X) = 0 and $f(X) = q(X)(X - \alpha)$ which means $X - \alpha$ divides f(X).

Remark This proves more than the statement of the theorem - it shows that $f(\alpha)$ is the remainder on dividing f(X) by $X - \alpha$.

Now that we have some language for discussing divisibility in polynomial rings, we can also think about factorization. In \mathbb{Z} , we are used to calling an integer *prime* if it does not have any interesting factorizations. In polynomial rings, we call a polynomial *irreducible* if it does not have any interesting factorizations.

Definition 22. Let \mathbb{F} be a field and let f(X) be a non-constant polynomial in $\mathbb{F}[X]$. Then f(X) is irreducible in $\mathbb{F}[X]$ (or irreducible over \mathbb{F}) if f(X) cannot be expressed as the product of two factors both of degree at least 1 in $\mathbb{F}[X]$. Otherwise f(X) is reducible over \mathbb{F} .

NOTES:

1. Any polynomial $f(X) \in \mathbb{F}[X]$ can be factorized (in an uninteresting way) by choosing $a \in \mathbb{F}^{\times}$ and writing

$$f(X) = \mathfrak{a}(\mathfrak{a}^{-1}f(X).$$

This is not considered to be a proper factorization of f(X).

- 2. Every polynomial of degree 1 is irreducible.
- 3. It is possible for a polynomial that is irreducible over a particular field to be reducible over a larger field. For example $X^2 2$ is irreducible in $\mathbb{Q}[X]$. However it is not irreducible in $\mathbb{R}[X]$, since here $X^2 2 = (X \sqrt{2})(X + \sqrt{2})$. Therefore when discussing irreducibility, it is important to specify what field we are talking about (sometimes this is clear from the context).
- 4. The only irreducible polynomials in C[X] are the linear (i.e. degree 1) polynomials. This is basically the Fundamental Theorem of Algebra, which states that every non-constant polynomial with coefficients in C has a root in C.

Let f(X) be a polynomial of degree ≥ 2 in $\mathbb{F}[X]$. If f(X) has a root α in \mathbb{F} then f(X) is not irreducible in $\mathbb{F}[X]$ since it has $X - \alpha$ as a proper factor. This statement has a partial converse.

Theorem 23. Let f(X) be a quadratic or cubic polynomial in f(X). Then f(X) is irreducible in $\mathbb{F}[X]$ if and only if f(X) has no root in \mathbb{F} .

Proof: Since f(X) is quadratic or cubic any proper factorization of f(X) in $\mathbb{F}[X]$ involves at least one linear (i.e. degree 1) factor. Suppose that r(X) = aX + b is a linear factor of f(X) in $\mathbb{F}[X]$. Then we have f(X) = r(X)g(X) for some g(X) in $\mathbb{F}[X]$. Since \mathbb{F} is a field we can rewrite this as

$$f(X) = (X + b/a)(ag(X)).$$

Thus X - (-b/a) divides f(X) in $\mathbb{F}[X]$ and by Theorem 21 -b/a is a root of f(X) in \mathbb{F} .

Theorem 23 certainly does not hold for polynomials of degree 4 or higher. That is, for a polynomial of degree 4 or more, having no roots in a particular field does not mean being irreducible over that field. Give an example to demonstrate this.

In general, deciding whether a given polynomial is reducible over a field is a difficult problem. We will look at this problem in the case where the field of coefficients is \mathbb{Q} . The problem of deciding reducibility in $\mathbb{Q}[X]$ is basically the same as that of deciding reducibility in $\mathbb{Z}[X]$, as the following discussion will show.

Lemma 24. For a field \mathbb{F} , let $a \in \mathbb{F}^{\times}$ and let $f(X) \in \mathbb{F}[X]$. Then f(X) is reducible in $\mathbb{F}[X]$ if and only if af(X) is reducible in $\mathbb{F}[X]$.

Proof: Any factorization of f(X) immediately implies a factorization of af(X), and vice versa.

Note that any polynomial in $\mathbb{Q}[X]$ can be multiplied by a non-zero integer to produce a polynomial in $\mathbb{Z}[X]$. Then by Lemma 24 the problem of deciding reducibility in $\mathbb{Q}[X]$ is the same as that of deciding reducibility over \mathbb{Q} for polynomials in $\mathbb{Z}[X]$.

Suppose that f(X) is a polynomial with coefficients in \mathbb{Z} . Surprisingly, f(X) has a proper factorization with factors in $\mathbb{Q}[X]$ if and only if f(X) has a proper factorization with factors (of the same degree) that belong to $\mathbb{Z}[X]$. This fact is a consequence of Gauss's lemma which is discussed below. It means that a polynomial with integer coefficients is irreducible over \mathbb{Q} provided that it is irreducible over \mathbb{Z} . This is good news because irreducibility over \mathbb{Z} should be easier to decide in principle (why is this?).

Definition 25. A polynomial in $\mathbb{Z}[X]$ is called primitive if the greatest common divisor of all its coefficients is 1.

EXAMPLE $3X^4 + 6X^2 - 2X - 2$ is primitive. $3X^4 + 6X^2 = 18X$ is not primitive, since 3 divides each of the coefficients.

The following statement is one of many unrelated things called "Gauss's Lemma".

Theorem 26. (*Gauss's Lemma*) Let f(X) and g(X) be primitive polynomials in $\mathbb{Z}[X]$. Then their product is again primitive.

Proof: We need to show that no prime divides all the coefficients of f(X)g(X). We can write

$$\begin{array}{rcl} f(X) & = & a_s X^s + a_{s-1} X^{s-1} + \dots + a_1 X + a_0, \ a_s \neq 0, \\ f(X) & = & b_t X^t + b_{t-1} X^{t-1} + \dots + b_1 X + b_0, \ b_t \neq 0. \end{array}$$

Let p be a prime. Since f(X) and g(X) are primitive we can choose k and m to be the least integers for which p does not divide a_k and p does not divide b_m . Now look at the coefficient of X^{k+m} in f(X)g(X). This is

$$a_{k+m}b_0 + \cdots + a_{k+1}b_{m-1} + a_kb_m + a_{k-1}b_{m+1} + \cdots + a_0b_{k+m}$$

Since $p|b_i$ for i < m and $p|a_i$ for i < k, every term in the above expression is a multiple of p except for $a_k b_m$ which is definitely not. Thus p does not divide the coefficient of X^{k+m} in f(X)g(X), p does not divide all the coefficients in f(X)g(X) and f(X)g(X) is primitive.