
2.3 Lecture 8: Reducible and Irreducible Polynomials

Theorem 21. (The Factor Theorem) Let f(X) be a polynomial of degree n � 1 in F[X] and let α ∈ F. Then
α is a root of f(X) if and only if X− α divides f(X) in F[X].

Proof: By the division algorithm (Theorem 18), we can write

f(X) = q(X)(X− α) + r(X),

where q(X) ∈ F[X] and either r(X) = 0 or r(X) has degree zero and is thus a non-zero element of
F. So r(X) ∈ F; we can write r(X) = β. Now

f(α) = q(α)(α− α) + β

= 0 + β

= β.

Thus f(α) = 0 if and only if β = 0, i.e. if and only if r(X) = 0 and f(X) = q(X)(X−α) which means
X− α divides f(X). �
Remark This proves more than the statement of the theorem - it shows that f(α) is the remainder
on dividing f(X) by X− α.

Now that we have some language for discussing divisibility in polynomial rings, we can also
think about factorization. In Z, we are used to calling an integer prime if it does not have any
interesting factorizations. In polynomial rings, we call a polynomial irreducible if it does not have
any interesting factorizations.

Definition 22. Let F be a field and let f(X) be a non-constant polynomial in F[X]. Then f(X) is irreducible
in F[X] (or irreducible over F) if f(X) cannot be expressed as the product of two factors both of degree at
least 1 in F[X]. Otherwise f(X) is reducible over F.

NOTES:

1. Any polynomial f(X) ∈ F[X] can be factorized (in an uninteresting way) by choosing a ∈ F×

and writing
f(X) = a(a−1f(X).

This is not considered to be a proper factorization of f(X).

2. Every polynomial of degree 1 is irreducible.

3. It is possible for a polynomial that is irreducible over a particular field to be reducible over
a larger field. For example X2 − 2 is irreducible in Q[X]. However it is not irreducible in
R[X], since here X2 − 2 = (X −

√
2)(X +

√
2). Therefore when discussing irreducibility, it

is important to specify what field we are talking about (sometimes this is clear from the
context).

4. The only irreducible polynomials in C[X] are the linear (i.e. degree 1) polynomials. This is
basically the Fundamental Theorem of Algebra, which states that every non-constant poly-
nomial with coefficients in C has a root in C.

Let f(X) be a polynomial of degree � 2 in F[X]. If f(X) has a root α in F then f(X) is not
irreducible in F[X] since it has X− α as a proper factor. This statement has a partial converse.

Theorem 23. Let f(X) be a quadratic or cubic polynomial in f(X). Then f(X) is irreducible in F[X] if and
only if f(X) has no root in F.
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Proof: Since f(X) is quadratic or cubic any proper factorization of f(X) in F[X] involves at least
one linear (i.e. degree 1) factor. Suppose that r(X) = aX+ b is a linear factor of f(X) in F[X]. Then
we have f(X) = r(X)g(X) for some g(X) in F[X]. Since F is a field we can rewrite this as

f(X) = (X+ b/a)(ag(X)).

Thus X− (−b/a) divides f(X) in F[X] and by Theorem 21 −b/a is a root of f(X) in F. �

Theorem 23 certainly does not hold for polynomials of degree 4 or higher. That is, for a poly-
nomial of degree 4 or more, having no roots in a particular field does not mean being irreducible
over that field. Give an example to demonstrate this.

In general, deciding whether a given polynomial is reducible over a field is a difficult problem.
We will look at this problem in the case where the field of coefficients is Q. The problem of
deciding reducibility in Q[X] is basically the same as that of deciding reducibility in Z[X], as the
following discussion will show.

Lemma 24. For a field F, let a ∈ F× and let f(X) ∈ F[X]. Then f(X) is reducible in F[X] if and only if
af(X) is reducible in F[X].

Proof: Any factorization of f(X) immediately implies a factorization of af(X), and vice versa.

Note that any polynomial in Q[X] can be multiplied by a non-zero integer to produce a poly-
nomial in Z[X]. Then by Lemma 24 the problem of deciding reducibility in Q[X] is the same as
that of deciding reducibility over Q for polynomials in Z[X].

Suppose that f(X) is a polynomial with coefficients in Z. Surprisingly, f(X) has a proper fac-
torization with factors in Q[X] if and only if f(X) has a proper factorization with factors (of the
same degree) that belong to Z[X]. This fact is a consequence of Gauss’s lemma which is discussed
below. It means that a polynomial with integer coefficients is irreducible over Q provided that it
is irreducible over Z. This is good news because irreducibility over Z should be easier to decide
in principle (why is this?).

Definition 25. A polynomial in Z[X] is called primitive if the greatest common divisor of all its coefficients
is 1.

EXAMPLE
3X4 + 6X2 − 2X− 2 is primitive.
3X4 + 6X2 = 18X is not primitive, since 3 divides each of the coefficients.

The following statement is one of many unrelated things called “Gauss’s Lemma”.

Theorem 26. (Gauss’s Lemma) Let f(X) and g(X) be primitive polynomials in Z[X]. Then their product
is again primitive.

Proof: We need to show that no prime divides all the coefficients of f(X)g(X). We can write

f(X) = asX
s + as−1X

s−1 + · · ·+ a1X+ a0, as �= 0,
f(X) = btX

t + bt−1X
t−1 + · · ·+ b1X+ b0, bt �= 0.

Let p be a prime. Since f(X) and g(X) are primitive we can choose k and m to be the least integers
for which p does not divide ak and p does not divide bm. Now look at the coefficient of Xk+m in
f(X)g(X). This is

ak+mb0 + · · ·+ ak+1bm−1 + akbm + ak−1bm+1 + · · ·+ a0bk+m.

Since p|bi for i < m and p|ai for i < k, every term in the above expression is a multiple of p except
for akbm which is definitely not. Thus p does not divide the coefficient of Xk+m in f(X)g(X), p
does not divide all the coefficients in f(X)g(X) and f(X)g(X) is primitive. �
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