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Consequences of the spherical cosine rule

‘cosa = cosasin bsin ¢ + cos bcos ¢ ‘

The Spherical Triangle Inequality In a spherical triangle PQR whose
arc lengths a, b, ¢ are all at most 7, a < b+ ¢, and a= b+ c only if
all three vertices are on the same great circle.

Proof Use the trigonometric identity

cos(b+ ¢) = cos bcos ¢ — sin bsinc.
Since sin b and sin ¢ are positive for b, ¢ € (0, 7), this means
cosa > cos(b + ¢),

and cos a = cos(b + ¢) only if & = 7 which is the case of “spherical
collinearity” . Since a € [0, 7] and the cosine function is strictly
decreasing on this interval, it follows that a < b+ c.

The Spherical Pythagorean Theorem If o = 5 then cosa = 0 and

cosa = cos bcosc.
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Geodesic arcs are shortest paths

We don’t need to deduce the spherical triangle inequality as a
consequence of the cosine rule, if we believe the following theorem from
Lecture 3.

Theorem The shortest path on the sphere from P to Q is along the great
circle that contains P and @, for distinct, non-antipodal points P and Q.
For antipodal P and @, we just replace “the great circle” with “a great
circle”.

To prove this theorem, we need a way of describing lengths of curves on
52, that allows us to compare them as quantities.
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Parametrically defined curves in R3

Suppose that a curve in R3 is described in parametric form as the set of
points
(A(t), f(t), f3(t)), a<t<b.

Examples

The XZ-plane intersects S2 in the great circle through (1,0, 0) and
(0,0,1), given by

{(cost,0,sint):0<t<2m}.

The curve
{(t, t,2t%) : t > 0}

consists of all points in the plane X = Y that satisfy

Z =2X? (=2Y?). Itis (part of) a parabola. The set of all points
of the form (t, t,2t?), with t € R, is the intersection of the
paraboloid Z = X2 + Y? with the plane X = Y.
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Length of a parametric curve

Suppose a curve C is described by the points (f(t), f(t), f3(t)),
a <t < b, and that C is traversed once as t increases from a to b.
The structure length of C is estimated by:
m Divide the interval [a, b] into N subintervals of length At.
m Write ty, ..., tyy for the successive values t at the endpoints of these
subintervals.

m Estimate the distance of the corresponding “subcurves” as if they
are line segments. The segment corresponding to the interval
[ti, tit1] has length

(A (ti + At) — (L), Bt + At) = Ko(t;), i3(ti + At) — f(17))]]
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Length of a parametric curve

Suppose a curve C is described by the points (f(t), f(t), f3(t)),
a <t < b, and that C is traversed once as t increases from a to b.
The structure length of C is estimated by:

m Divide the interval [a, b] into N subintervals of length At.

m Write ty, ..., tyy for the successive values t at the endpoints of these
subintervals.

m Estimate the distance of the corresponding “subcurves” as if they
are line segments. The segment corresponding to the interval
[ti, tit1] has length

> (£t + Ar) - £i(1)

j=1,2,3
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Length of a parametric curve

Suppose a curve C is described by the points (f1(t), f2(t), f3(t)),
a <t < b, and that C is traversed once as t increases from a to b.
The structure length of C is estimated by:
m Divide the interval [a, b] into N subintervals of length At.
m Write tp, ..., ty for the successive values t at the endpoints of these
subintervals.
m Estimate the distance of the corresponding “subcurves” as if they
are line segments. The segment corresponding to the interval
[ti, ti+1] has length  The length of the curve is estimated by

5 Z(f(t,+At 6(6)° 5,

2
i=0 Jj=1,2,3 )
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Length of a parametric curve

Suppose a curve C is described by the points (f1(t), f2(t), f3(t)),
a <t < b, and that C is traversed once as t increases from a to b.
The structure length of C is estimated by:
m Divide the interval [a, b] into N subintervals of length At.
m Write tp, ..., tyy for the successive values t at the endpoints of these
subintervals.
m Estimate the distance of the corresponding “subcurves” as if they
are line segments. The segment corresponding to the interval
[ti, ti+1] has length  In the limit as At — 0, N — oo (provided
that the f; are differentiable functions of t, this gives the following
formula for the length L(C) of C

t=b
L) = [ BP0 + (o) .
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Let C be defined as {(t, t2,5t3),0 < t < 1}. Find the length of C.

Solution

f(t) =t fi(t) =

L(C)

1, h(t) =t H(t)=2t, f(t) =33, f(t) =22

t=1
- /t: VE@)? + (B(0)? + (F(2)? dt

t=

1
= V14 42 + 4t4 dt

t1
—/ \/(1+2t2)2 dt = / 1+ 282 dt

2 57
= t+=t
+3

t=0 3

Remark This example is carefully chosen, generally we do not expect

VA ()2 + (£(t))2 + (f(t))? to have a nice antiderivative, even for
relatively nice functions f;. Another case where everything is nice (even
nicer) is a circular arc parametrized as {(cost,sint),a < t < b}.
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Shortest paths on S? - back to the theorem

To prove: For (distinct, non-antipodal) points P and @ on S, the
shortest path on S2 from P to A is along the shorter great circle arc that
connects them.

We set up the coordinate axes so that P = (0,0, 1) (the North Pole).
Goal: show the shortest path from P to @ is the meridian through Q.

Think of the meridian through (1,0,0) as “zero longitude” and measure
longitude from there, as an arc/angle in the unit circle in the XY-plane.

Points on S? are described by their latitude @ and longitude ¢.

Any path from P to Q can be parametrized by functions 6(t) and ¢(t),
describing the latitude and longitude of points along the path, as t
increases from 0 to some b.

We want to show that the shortest path is the one of constant longitude,
where ¢(t) is a constant function of t.

To apply the arc length formula, we need Cartesian coordinates.
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Longitude and Latitude to Cartesian coordinates

Lemma The point of S? with latitude § and longitude ¢ has Cartesian

coordinates
(cos 8 cos ¢, cos b sin ¢, sin b))

(Check that these satisfy X2 + Y2 + 72 = 1.)

Proof The points of S? at latitude # form a circle C of radius cos in the
horizontal plane Z = sin 6.

The point of S? in the XY-plane (Z = 0) with longitude ¢ is

(cos ¢, sin g, 0).

To get the X- and Y-coordinates of the point with the same longitude at
latitude @, scale the X- and Y- coordinates by the radius cos of C.

So latitude 6, longitude ¢ translates to the Cartesian coordinates

(cos @ cos ¢, cos @ sin ¢, sinf).
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The Shortest Path

Now a path from P to @ has a parametric description
(cosO(t) cos ¢(t), cosO(t)sinp(t),sind(t)), a<t<bh.

The t-derivatives of the components are _
m x(t) = —sinf(t) cos §(t)0(t) — cos 6(t) sin ¢(t)(¢)
m y(t) = —sinf(t)sin ¢(t)6(t) + cos O(t) cos ¢(t)¢(t)
m z(t) = cos(t)0(t)
Now (check that)
32+ 32 + 22 = 0(t)% + cos? 0(t)p(t)2.

The path has length

/ o \/@'(t)2 + cos? (1) d(t)? dt.
t=a 5

N— ——
>

This is minimized when ¢(t) = 0 (i.e. when ¢(t) is constant), and then
its value is 8(b) — 6(a), the length of the great circle arc PQ.
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