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Consequences of the spherical cosine rule

cos a = cosα sin b sin c + cos b cos c

1 The Spherical Triangle Inequality In a spherical triangle PQR whose
arc lengths a, b, c are all at most π, a ≤ b + c , and a = b + c only if
all three vertices are on the same great circle.
Proof Use the trigonometric identity

cos(b + c) = cos b cos c − sin b sin c .

Since sin b and sin c are positive for b, c ∈ (0,π), this means

cos a ≥ cos(b + c),

and cos a = cos(b + c) only if α = π which is the case of “spherical
collinearity”. Since a ∈ [0,π] and the cosine function is strictly
decreasing on this interval, it follows that a ≤ b + c .

2 The Spherical Pythagorean Theorem If α = π
2 then cosα = 0 and

cos a = cos b cos c .
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Geodesic arcs are shortest paths

We don’t need to deduce the spherical triangle inequality as a
consequence of the cosine rule, if we believe the following theorem from
Lecture 3.
Theorem The shortest path on the sphere from P to Q is along the great
circle that contains P and Q, for distinct, non-antipodal points P and Q.
For antipodal P and Q, we just replace “the great circle” with “a great
circle”.
To prove this theorem, we need a way of describing lengths of curves on
S2, that allows us to compare them as quantities.
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Parametrically defined curves in R3

Suppose that a curve in R3 is described in parametric form as the set of
points

(f1(t), f2(t), f3(t)), a ≤ t ≤ b.

Examples

1 The XZ -plane intersects S2 in the great circle through (1, 0, 0) and
(0, 0, 1), given by

{(cos t, 0, sin t) : 0 ≤ t < 2π}.

2 The curve
{(t, t, 2t2) : t ≥ 0}

consists of all points in the plane X = Y that satisfy
Z = 2X 2 (= 2Y 2). It is (part of) a parabola. The set of all points
of the form (t, t, 2t2), with t ∈ R, is the intersection of the
paraboloid Z = X 2 + Y 2 with the plane X = Y .
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Length of a parametric curve

Suppose a curve C is described by the points (f1(t), f2(t), f3(t)),
a ≤ t ≤ b, and that C is traversed once as t increases from a to b.
The structure length of C is estimated by:

Divide the interval [a, b] into N subintervals of length ∆t.

Write t0, ... , tN for the successive values t at the endpoints of these
subintervals.

Estimate the distance of the corresponding “subcurves” as if they
are line segments. The segment corresponding to the interval
[ti , ti+1] has length

||(f1(ti + ∆t)− f1(ti ), f2(ti + ∆t)− f2(ti ), f3(ti + ∆t)− f3(ti ))||
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Length of a parametric curve

Suppose a curve C is described by the points (f1(t), f2(t), f3(t)),
a ≤ t ≤ b, and that C is traversed once as t increases from a to b.
The structure length of C is estimated by:

Divide the interval [a, b] into N subintervals of length ∆t.

Write t0, ... , tN for the successive values t at the endpoints of these
subintervals.

Estimate the distance of the corresponding “subcurves” as if they
are line segments. The segment corresponding to the interval
[ti , ti+1] has length The length of the curve is estimated by

N−1∑
i=0

√√√√ ∑
j=1,2,3

(fj(ti + ∆t)− fj(ti ))2

(∆t)2
∆t
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Length of a parametric curve

Suppose a curve C is described by the points (f1(t), f2(t), f3(t)),
a ≤ t ≤ b, and that C is traversed once as t increases from a to b.
The structure length of C is estimated by:

Divide the interval [a, b] into N subintervals of length ∆t.

Write t0, ... , tN for the successive values t at the endpoints of these
subintervals.

Estimate the distance of the corresponding “subcurves” as if they
are line segments. The segment corresponding to the interval
[ti , ti+1] has length In the limit as ∆t → 0,N →∞ (provided
that the fj are differentiable functions of t, this gives the following
formula for the length L(C) of C

L(C) =

∫ t=b

t=a

√
(f ′1(t))2 + (f ′2(t))2 + (f ′3(t))2 dt.
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Example

Let C be defined as {(t, t2, 2
3 t

3), 0 ≤ t ≤ 1}. Find the length of C.
Solution
f1(t) = t, f ′1(t) = 1, f2(t) = t2, f ′2(t) = 2t, f3(t) = 2

3 t
3, f ′3(t) = 2t2.

L(C) =

∫ t=1

t=0

√
(f ′1(t))2 + (f ′2(t))2 + (f ′3(t))2 dt

=

∫ t=1

t=0

√
1 + 4t2 + 4t4 dt

=

∫ t=1

t=0

√
(1 + 2t2)2 dt =

∫ t=1

t=0
1 + 2t2 dt

= t +
2

3
t3
∣∣∣∣t=1

t=0

=
5

3

Remark This example is carefully chosen, generally we do not expect√
(f ′1(t))2 + (f ′2(t))2 + (f ′3(t))2 to have a nice antiderivative, even for

relatively nice functions fj . Another case where everything is nice (even
nicer) is a circular arc parametrized as {(cos t, sin t), a ≤ t ≤ b}.
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Shortest paths on S2 - back to the theorem

To prove: For (distinct, non-antipodal) points P and Q on S2, the
shortest path on S2 from P to A is along the shorter great circle arc that
connects them.
We set up the coordinate axes so that P = (0, 0, 1) (the North Pole).
Goal: show the shortest path from P to Q is the meridian through Q.

Think of the meridian through (1, 0, 0) as “zero longitude” and measure
longitude from there, as an arc/angle in the unit circle in the XY -plane.

Points on S2 are described by their latitude θ and longitude φ.

Any path from P to Q can be parametrized by functions θ(t) and φ(t),
describing the latitude and longitude of points along the path, as t
increases from 0 to some b.

We want to show that the shortest path is the one of constant longitude,
where φ(t) is a constant function of t.

To apply the arc length formula, we need Cartesian coordinates.
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Longitude and Latitude to Cartesian coordinates

Lemma The point of S2 with latitude θ and longitude φ has Cartesian
coordinates

(cos θ cosφ, cos θ sinφ, sin θ)

(Check that these satisfy X 2 + Y 2 + Z 2 = 1.)

Proof The points of S2 at latitude θ form a circle C of radius cos θ in the
horizontal plane Z = sin θ.
The point of S2 in the XY -plane (Z = 0) with longitude φ is
(cosφ, sinφ, 0).
To get the X - and Y -coordinates of the point with the same longitude at
latitude θ, scale the X - and Y - coordinates by the radius cos θ of C.
So latitude θ, longitude φ translates to the Cartesian coordinates

(cos θ cosφ, cos θ sinφ, sin θ).
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The Shortest Path

Now a path from P to Q has a parametric description

(cos θ(t) cosφ(t), cos θ(t) sinφ(t), sin θ(t)), a ≤ t ≤ b.

The t-derivatives of the components are

ẋ(t) = −sinθ(t) cosφ(t)θ̇(t)− cos θ(t) sinφ(t)φ̇(t)

ẏ(t) = −sinθ(t) sinφ(t)θ̇(t) + cos θ(t) cosφ(t)φ̇(t)

ż(t) = cos θ(t)θ̇(t)

Now (check that)

ẋ2 + ẏ2 + ż2 = θ̇(t)2 + cos2 θ(t)φ̇(t)2.

The path has length∫ t=b

t=a

√
θ̇(t)2 + cos2 θ(t)φ̇(t)2︸ ︷︷ ︸

≥0

dt.

This is minimized when φ̇(t) = 0 (i.e. when φ(t) is constant), and then
its value is θ(b)− θ(a), the length of the great circle arc PQ.
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