Euclidean and non-Euclidean Geometry (MA3101) Lecture 7: Arc Length

Dr Rachel Quinlan

October 2, 2024

Consequences of the spherical cosine rule

 $\cos a = \cos \alpha \sin b \sin c + \cos b \cos c$

1 The Spherical Triangle Inequality In a spherical triangle *PQR* whose arc lengths a, b, c are all at most π , $a \leq b+c$, and $a=b+c$ only if all three vertices are on the same great circle. Proof Use the trigonometric identity

 $\cos(b + c) = \cos b \cos c - \sin b \sin c$.

Since sin b and sin c are positive for $b, c \in (0, \pi)$, this means

 $\cos a \geq \cos(b+c)$,

and cos $a = \cos(b + c)$ only if $\alpha = \pi$ which is the case of "spherical collinearity". Since $a \in [0, \pi]$ and the cosine function is strictly decreasing on this interval, it follows that $a \leq b + c$.

2 The Spherical Pythagorean Theorem If $\alpha = \frac{\pi}{2}$ $\frac{\pi}{2}$ then $\cos \alpha = 0$ and

 $\cos a = \cos b \cos c$.

We don't need to deduce the spherical triangle inequality as a consequence of the cosine rule, if we believe the following theorem from Lecture 3.

Theorem The shortest path on the sphere from P to Q is along the great circle that contains P and Q, for distinct, non-antipodal points P and Q. For antipodal P and Q, we just replace "the great circle" with "a great circle".

To prove this theorem, we need a way of describing lengths of curves on $S²$, that allows us to compare them as quantities.

Parametrically defined curves in \mathbb{R}^3

Suppose that a curve in \mathbb{R}^3 is described in parametric form as the set of points

$$
(f_1(t), f_2(t), f_3(t)), a \leq t \leq b.
$$

Examples

 $\bf{1}$ The X Z-plane intersects S^2 in the great circle through $(1,0,0)$ and (0, 0, 1), given by

$$
\{(\cos t, 0, \sin t): 0 \le t < 2\pi\}.
$$

The curve

$$
\{(t, t, 2t^2): t \geq 0\}
$$

consists of all points in the plane $X = Y$ that satisfy $Z = 2X^2$ (= 2Y²). It is (part of) a parabola. The set of all points of the form $(t, t, 2t^2)$, with $t \in \mathbb{R}$, is the intersection of the paraboloid $Z = X^2 + Y^2$ with the plane $X = Y$.

- Divide the interval [a, b] into N subintervals of length Δt .
- Write t_0, \ldots, t_N for the successive values t at the endpoints of these subintervals.
- **E** Estimate the distance of the corresponding "subcurves" as if they are line segments. The segment corresponding to the interval $[t_i, t_{i+1}]$ has length

 $||(f_1(t_i + \Delta t) - f_1(t_i), f_2(t_i + \Delta t) - f_2(t_i), f_3(t_i + \Delta t) - f_3(t_i))||$

- Divide the interval [a, b] into N subintervals of length Δt .
- Write t_0, \ldots, t_N for the successive values t at the endpoints of these subintervals.
- **Estimate the distance of the corresponding "subcurves"** as if they are line segments. The segment corresponding to the interval $[t_i, t_{i+1}]$ has length

$$
\sqrt{\sum_{j=1,2,3} \left(f_j(t_i+\Delta t)-f_j(t_i)\right)^2}
$$

- Divide the interval [a, b] into N subintervals of length Δt .
- Write t_0, \ldots, t_N for the successive values t at the endpoints of these subintervals.
- **Estimate the distance of the corresponding "subcurves"** as if they are line segments. The segment corresponding to the interval $[t_i, t_{i+1}]$ has length \top The length of the curve is estimated by

$$
\sum_{i=0}^{N-1} \sqrt{\sum_{j=1,2,3} \frac{(f_j(t_i + \Delta t) - f_j(t_i))^2}{(\Delta t)^2}} \Delta t
$$

- Divide the interval [a, b] into N subintervals of length Δt .
- Write t_0, \ldots, t_N for the successive values t at the endpoints of these subintervals.
- **Estimate the distance of the corresponding "subcurves"** as if they are line segments. The segment corresponding to the interval $[t_i,t_{i+1}]$ has length \quad In the limit as $\Delta\, t \to 0$, $N \to \infty$ (provided that the f_i are differentiable functions of t , this gives the following formula for the length $L(C)$ of C

$$
L(C) = \int_{t=a}^{t=b} \sqrt{(f_1'(t))^2 + (f_2'(t))^2 + (f_3'(t))^2} dt.
$$

Example

Let C be defined as $\{(t, t^2, \frac{2}{3})\}$ $(\frac{2}{3}t^3)$, $0 \le t \le 1$ }. Find the length of C . **Solution**

$$
f_1(t) = t, \ f'_1(t) = 1, \quad f_2(t) = t^2, \ f'_2(t) = 2t, \quad f_3(t) = \frac{2}{3}t^3, \ f'_3(t) = 2t^2.
$$
\n
$$
L(C) = \int_{t=0}^{t=1} \sqrt{(f'_1(t))^2 + (f'_2(t))^2 + (f'_3(t))^2} dt
$$
\n
$$
= \int_{t=0}^{t=1} \sqrt{1 + 4t^2 + 4t^4} dt
$$
\n
$$
= \int_{t=0}^{t=1} \sqrt{(1 + 2t^2)^2} dt = \int_{t=0}^{t=1} 1 + 2t^2 dt
$$
\n
$$
= t + \frac{2}{3}t^3 \Big|_{t=0}^{t=1} = \frac{5}{3}
$$

Remark This example is carefully chosen, generally we do not expect $\sqrt{(f_1'(t))^2+(f_2'(t))^2+(f_3'(t))^2}$ to have a nice antiderivative, even for relatively nice functions f_j . Another case where everything is nice (even nicer) is a circular arc parametrized as $\{(\cos t, \sin t), a \le t \le b\}.$

Shortest paths on S^2 - back to the theorem

To prove: For (distinct, non-antipodal) points P and Q on S^2 , the shortest path on S^2 from P to A is along the shorter great circle arc that connects them.

We set up the coordinate axes so that $P = (0, 0, 1)$ (the North Pole). Goal: show the shortest path from P to Q is the meridian through Q .

Think of the meridian through (1, 0, 0) as "zero longitude" and measure longitude from there, as an arc/angle in the unit circle in the XY -plane.

Points on S^2 are described by their latitude θ and longitude ϕ .

Any path from P to Q can be parametrized by functions $\theta(t)$ and $\phi(t)$. describing the latitude and longitude of points along the path, as t increases from 0 to some b.

We want to show that the shortest path is the one of constant longitude, where $\phi(t)$ is a constant function of t.

To apply the arc length formula, we need Cartesian coordinates.

Lemma The point of S^2 with latitude θ and longitude ϕ has Cartesian coordinates

 $(\cos \theta \cos \phi, \cos \theta \sin \phi, \sin \theta)$

(Check that these satisfy $X^2 + Y^2 + Z^2 = 1$.)

Proof The points of S^2 at latitude θ form a circle $\mathcal C$ of radius cos θ in the horizontal plane $Z = \sin \theta$.

The point of S^2 in the XY -plane $(Z=0)$ with longitude ϕ is $(\cos \phi, \sin \phi, 0).$

To get the X - and Y-coordinates of the point with the same longitude at latitude θ , scale the X- and Y- coordinates by the radius cos θ of C.

So latitude θ , longitude ϕ translates to the Cartesian coordinates

 $(\cos \theta \cos \phi, \cos \theta \sin \phi, \sin \theta).$

The Shortest Path

Now a path from P to Q has a parametric description

 $(\cos \theta(t) \cos \phi(t), \cos \theta(t) \sin \phi(t), \sin \theta(t)), a < t < b.$

The t-derivatives of the components are

\n- \n
$$
\dot{x}(t) = -\sin\theta(t)\cos\phi(t)\dot{\theta}(t) - \cos\theta(t)\sin\phi(t)\dot{\phi}(t)
$$
\n
\n- \n
$$
\dot{y}(t) = -\sin\theta(t)\sin\phi(t)\dot{\theta}(t) + \cos\theta(t)\cos\phi(t)\dot{\phi}(t)
$$
\n
\n- \n
$$
\dot{z}(t) = \cos\theta(t)\dot{\theta}(t)
$$
\n
\n

Now (check that)

$$
\dot{x}^2 + \dot{y}^2 + \dot{z}^2 = \dot{\theta}(t)^2 + \cos^2 \theta(t) \dot{\phi}(t)^2.
$$

The path has length

$$
\int_{t=a}^{t=b} \sqrt{\dot{\theta}(t)^2 + \underbrace{\cos^2 \theta(t) \dot{\phi}(t)^2}_{\geq 0}} dt.
$$

This is minimized when $\dot{\phi}(t) = 0$ (i.e. when $\phi(t)$ is constant), and then its value is $\theta(b) - \theta(a)$, the length of the great circle arc PQ.