Euclidean and non-Euclidean Geometry (MA3101) Lecture 12: The Hyperbolic Plane \mathcal{H}^2

Dr Rachel Quinlan

October 30, 2024

From the geometry of H we will construct a surface \mathcal{H}^2 with the following properties in common with the sphere \mathcal{S}^2 and Euclidean plane

- Every pair of points in H^2 belong to a unique line (and are connected by a unique line segment).
- \blacksquare The geometry is homogenous (the same at every point)
- \blacksquare The geometry is isotropic (the same in all directions)

The three geometries have different incidence behaviour for lines: Given a line L and a point P not belonging to L

- In the Euclidean plane, there is a unique line through P that does not intersect L
- In S^2 , every line through P intersects L (in two points)
- In \mathcal{H}^2 , there are multiple lines through P that do not intersect L (in different ways)

Isometries of S^1

Definition An isometry of S^1 is a function from S^1 to S^1 that preserves distance along arcs. This means: if *a*, *b* are points of S^1 with images *a'*, *b'*, then $\mathsf{distance}_{\mathsf{S}^1}(\mathsf{a},\mathsf{b}) = \mathsf{distance}_{\mathsf{S}^1}(\mathsf{a}',\mathsf{b}').$ Equivalently $a \cdot b = a' \cdot b'$, if points of S^1 are considered as unit vectors in \mathbb{R}^2 .

There are two types of isometries of S^1 : rotations about the origin through any angle, and reflections in any diameter. Both arise from linear transformations of \mathbb{R}^2 with standard matrices as follows:

Rotation R_{α} : $\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$ sin α cos α $\Bigg\}, \begin{array}{c} (\cos t, \sin t) \rightarrow \\ (\cos(t + \cos t) \sin t) \end{array}$ $(\cos(t + \alpha), \sin(t + \alpha))$ Reflection M_{α} in the diameter through (cos $\frac{\alpha}{2}$, sin $\frac{\alpha}{2}$): $\int \cos \alpha$ sin α sin α – cos α $\Big),\,(\cos t,\sin t)\rightarrow(\cos(\alpha-t),\sin(\alpha-t))$ All these matrices comprise the orthogonal group $O(2)$.

Dr Rachel Quinlan 3 / 6

Definition An isometry of H is a function from H to H that preserves hyperbolic (Lorentz) distance along arcs. This means: if a, b are points of $\mathcal H$ with images a', b', then distance $_{\mathcal{H}}(\mathsf{a},\mathsf{b}) = \mathsf{distance}_{\mathcal{H}}(\mathsf{a}',\mathsf{b}').$ Equivalently $a \cdot_L b = a' \cdot_L b'$.

One isometry of H is the Lorentz translation T_{α} , which maps (sinh s, cosh s) to (sinh(s + α), cosh(s + α)) for a fixed $\alpha \in \mathbb{R}$.

The distance in H between (sinh s_1 , cosh s_1) and (sinh s_2 , cosh s_2) is $|s_1 - s_2|$, the same as $|(s_1 + \alpha) - (s_2 + \alpha)|$.

The $\, T_{\alpha}$ are analogous to rotations in S^1 , and also arise from linear transformations of \mathbb{R}^2 .

$$
\text{The standard matrix of } \mathcal{T}_{\alpha}: \mathbb{R}^2 \to \mathbb{R}^2 \text{ is } \left(\begin{array}{cc} \cosh \alpha & \sinh \alpha \\ \sinh \alpha & \cosh \alpha \end{array} \right)
$$

Definition An isometry of H is a function from H to H that preserves hyperbolic (Lorentz) distance along arcs. This means: if a, b are points of $\mathcal H$ with images a', b', then distance $_{\mathcal{H}}(\mathsf{a},\mathsf{b}) = \mathsf{distance}_{\mathcal{H}}(\mathsf{a}',\mathsf{b}').$ Equivalently $a \cdot_L b = a' \cdot_L b'$.

The reflection M_0 in (0, 1), $\mathcal{H} \to \mathcal{H}$, (sinh s, cosh s) \to (– sinh s, cosh s). The reflection of \mathbb{R}^2 in the Z-axis has matrix $\left(\begin{array}{cc} -1 & 0 \ 0 & 1 \end{array} \right)$. For $\alpha\in\mathbb{R}$, the reflection M_{α} of $\mathcal H$ fixes (sinh $\frac{\alpha}{2},$ cosh $\frac{\alpha}{2})$ and maps $(\sinh s, \cosh s) \rightarrow (\sinh(\alpha - s), \cosh(\alpha - s))$.

 M_{α} preserves distance in H and has matrix $\begin{pmatrix} -\cosh\alpha & \sinh\alpha \\ \sinh\alpha & \cosh\alpha \end{pmatrix}$

 $-$ sinh α cosh α .

Linear Algebra and/or Group Theory Interpretation

The set of matrices T_{α} and M_{α} describing isometries of H also forms a group, known as the Lorentz group. For a pair of vectors $u = \binom{a}{b}$ $\binom{a}{b}$ and

 $v = \begin{pmatrix} c \\ d \end{pmatrix}$ σ_d^c) in \mathbb{R}^2 their ordinary and Lorentz inner products are respectively given by the matrix products

$$
\mathbf{u} \cdot \mathbf{v} \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = u^T I_2 v = u^T v.
$$

$$
\mathbf{u} \cdot \mathbf{u} \cdot \mathbf{v} \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = u^T L_2 v.
$$

Suppose that $\mathcal{T}:\mathbb{R}^2\to\mathbb{R}^2$ preserves the ordinary scalar product. Then for any vectors $u, v \in \mathbb{R}^2$, $\mathcal{T}(u) \cdot \mathcal{T}(v) = u \cdot v$.

If M_T is the matrix of T, this means for all u and v that

$$
(Mu)^{T} I_{2}(Mv) = u^{T} I_{2}v \Longrightarrow u^{T} M^{T} Mv = u^{T} v,
$$

for all $u, v \in \mathbb{R}^2$. This means $M^TM = I_2$, so $M^{-1} = M^T$.

The hyperbolic plane

Exactly as S^2 : $x^2 + y^2 + z^2 = 1$ is obtained by rotating the unit circle inthe XZ -plane about the Z -axis, we obtain the upper sheet of the hyperboloid $x^2 + y^2 - z^2 = -1$ by rotating \mathcal{H}^1 about the Z-axis. The Lorentz inner product for vectors in \mathbb{R}^3 is defined by

$$
(x_1, y_1, z_1) \cdot_L (x_2, y_2, z_2) = x_1x_2 + y_1y_2 - z_1z_2
$$

 \mathcal{H}^2 , equipped with the Lorentz pseudometric in which the squared length of a vector v is $v \cdot_l v$, is (the hyperboloid model of) the hyperbolic plane. H is the intersection of H^2 with the XZ-plane.

We have a concept of distance in H , defined by

$$
d_{\mathcal{H}}(P,Q) = \cosh^{-1}(-P \cdot_L Q).
$$

This will extend to \mathcal{H}^2 .

