Euclidean and non-Euclidean Geometry (MA3101) Lecture 12: The Hyperbolic Plane \mathcal{H}^2

Dr Rachel Quinlan

October 30, 2024

From the geometry of \mathcal{H} we will construct a surface \mathcal{H}^2 with the following properties in common with the sphere S^2 and Euclidean plane

- Every pair of points in H² belong to a unique line (and are connected by a unique line segment).
- The geometry is homogenous (the same at every point)
- The geometry is isotropic (the same in all directions)

The three geometries have different incidence behaviour for lines: Given a line L and a point P not belonging to L

- In the Euclidean plane, there is a unique line through P that does not intersect L
- In S^2 , every line through P intersects L (in two points)
- In H², there are multiple lines through P that do not intersect L (in different ways)

Isometries of S^1

Definition An isometry of S^1 is a function from S^1 to S^1 that preserves distance along arcs. This means: if a, b are points of S^1 with images a', b', then distance_{S1}(a, b) = distance_{S1}(a', b'). Equivalently $a \cdot b = a' \cdot b'$, if points of S^1 are considered as unit vectors in \mathbb{R}^2 .

There are two types of isometries of S^1 : rotations about the origin through any angle, and reflections in any diameter. Both arise from linear transformations of \mathbb{R}^2 with standard matrices as follows:

Rotation R_{α} : $\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}, \quad (\cos t, \sin t) \rightarrow \\ (\cos(t+\alpha), \sin(t+\alpha)) \end{pmatrix}$ Reflection M_{α} in the diameter through $(\cos \frac{\alpha}{2}, \sin \frac{\alpha}{2})$: $\begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix}, \quad (\cos t, \sin t) \rightarrow (\cos(\alpha - t), \sin(\alpha - t)) \end{pmatrix}$ All these matrices comprise the orthogonal group O(2).

Dr Rachel Quinlan

MA3101 Lecture 12

Definition An isometry of \mathcal{H} is a function from \mathcal{H} to \mathcal{H} that preserves hyperbolic (Lorentz) distance along arcs. This means: if *a*, *b* are points of \mathcal{H} with images *a'*, *b'*, then distance_{\mathcal{H}}(*a*, *b*) = distance_{\mathcal{H}}(*a'*, *b'*). Equivalently $a \cdot_L b = a' \cdot_L b'$.

One isometry of \mathcal{H} is the Lorentz translation \mathcal{T}_{α} , which maps $(\sinh s, \cosh s)$ to $(\sinh(s + \alpha), \cosh(s + \alpha))$ for a fixed $\alpha \in \mathbb{R}$.

The distance in \mathcal{H} between $(\sinh s_1, \cosh s_1)$ and $(\sinh s_2, \cosh s_2)$ is $|s_1 - s_2|$, the same as $|(s_1 + \alpha) - (s_2 + \alpha)|$.

The T_{α} are analogous to rotations in S^1 , and also arise from linear transformations of \mathbb{R}^2 .

The standard matrix of $T_{\alpha} : \mathbb{R}^2 \to \mathbb{R}^2$ is $\begin{pmatrix} \cosh \alpha & \sinh \alpha \\ \sinh \alpha & \cosh \alpha \end{pmatrix}$

Definition An isometry of \mathcal{H} is a function from \mathcal{H} to \mathcal{H} that preserves hyperbolic (Lorentz) distance along arcs. This means: if a, b are points of \mathcal{H} with images a', b',then distance_{\mathcal{H}} $(a, b) = distance_{\mathcal{H}}(a', b')$. Equivalently $a \cdot b = a' \cdot b'$.

The reflection M_0 in (0, 1), $\mathcal{H} \to \mathcal{H}$, $(\sinh s, \cosh s) \to (-\sinh s, \cosh s)$. The reflection of \mathbb{R}^2 in the Z-axis has matrix $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$. For $\alpha \in \mathbb{R}$, the reflection M_{α} of \mathcal{H} fixes (sinh $\frac{\alpha}{2}$, cosh $\frac{\alpha}{2}$) and maps $(\sinh s, \cosh s) \rightarrow (\sinh(\alpha - s), \cosh(\alpha - s))$.

 M_{α} preserves distance in \mathcal{H} and has matrix $\begin{pmatrix} -\cosh \alpha & \sinh \alpha \\ -\sinh \alpha & \cosh \alpha \end{pmatrix}$.

Linear Algebra and/or Group Theory Interpretation

The set of matrices T_{α} and M_{α} describing isometries of \mathcal{H} also forms a group, known as the Lorentz group. For a pair of vectors $u = \begin{pmatrix} a \\ b \end{pmatrix}$ and

 $v = \begin{pmatrix} c \\ d \end{pmatrix}$ in \mathbb{R}^2 their ordinary and Lorentz inner products are respectively given by the matrix products

$$u \cdot v \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = u^T l_2 v = u^T v$$
$$u \cdot v \begin{pmatrix} a & b \end{pmatrix} \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}}_{L_2} \begin{pmatrix} c \\ d \end{pmatrix} = u^T L_2 v.$$

Suppose that $T : \mathbb{R}^2 \to \mathbb{R}^2$ preserves the ordinary scalar product. Then for any vectors $u, v \in \mathbb{R}^2$, $T(u) \cdot T(v) = u \cdot v$.

If M_T is the matrix of T, this means for all u and v that

$$(Mu)^{T} I_{2}(Mv) = u^{T} I_{2} v \Longrightarrow u^{T} M^{T} Mv = u^{T} v,$$

for all $u, v \in \mathbb{R}^2$. This means $M^T M = I_2$, so $M^{-1} = M^T$.

The hyperbolic plane

Exactly as $S^2: x^2 + y^2 + z^2 = 1$ is obtained by rotating the unit circle inthe XZ-plane about the Z-axis, we obtain the upper sheet of the hyperboloid $x^2 + y^2 - z^2 = -1$ by rotating \mathcal{H}^1 about the Z-axis. The Lorentz inner product for vectors in \mathbb{R}^3 is defined by

$$(x_1, y_1, z_1) \cdot_L (x_2, y_2, z_2) = x_1 x_2 + y_1 y_2 - z_1 z_2$$

 \mathcal{H}^2 , equipped with the Lorentz pseudometric in which the squared length of a vector v is $v \cdot_L v$, is (the hyperboloid model of) the hyperbolic plane. \mathcal{H} is the intersection of \mathcal{H}^2 with the XZ-plane.

We have a concept of distance in $\ensuremath{\mathcal{H}}$, defined by

$$d_{\mathcal{H}}(P, Q) = \cosh^{-1}(-P \cdot_L Q).$$

This will extend to \mathcal{H}^2 .

