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The hyperbola —x? + z°> =1 in R?

The picture below show the unit circle x2 + z? = 1, the hyperbola
—x2 + z? = 1 (along with its asymptotes y = +x) and the upper branch
H: z=+/x%2 — 1 of the hyperbola (this is the part that we will care
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How to parametrize the (upper branch of the) hyperbola?
Its points all have positive z-coordinate. For any positive a,

_<a—i>2+(a+i>2=4,

S0 (% (a — l)) ) (% (a+ %)) is a point of H.

a
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Parametrization of H

For a > 0, the point with coordinates

(2(-3)2(+3))

belongs to H.

a— 1 is a continuous increasing function of a for a > 0 (check this).
1 + 1
a—;—+-—o0aa—0" and a— 3 — o0asa— oo,

It follows that every point of A has these coordinates for some a.
Now write a = e® (we can do this since a is positive). Then H consists of
all points of the form

<e$ —eS eSS4 e

> , > ) = (sinhs, coshs), s € R.
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The Hyperbolic Trigonometric Functions

Definition The hyperbolic sine and cosine functions (usually pronounced
“sinch” and ‘“cosh”) are defined for s € R by

1 1
sinhs = E(es — e °), coshs = E(es +e7°).

Properties

sinh and cosh describe coordinates of points of the unit hyperbola,
the way that sin and cos describe points on the circle.

cosh(—s) = cosh(s) and sinh(—s) = —sinh(s), for s € R.

sinh®s — cosh?s = —1 (or cosh®s — sinh?s = 1), for all s e R.

4] %(sinh s) = cosh s and %(cosh s) =sinhs.
This is one rationale for using coordinates cosh and sinh instead of
the previously suggested %(a + %) for a > 0.

For s, t € R, cosh scosh t — sinh ssinh t = cosh(t — s).

@ And many more analogues of trigonometric identities, that we don't
need too urgently.

All of these can be proved directly from the definitions.
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H and S! (the unit circle) in the xz-plane

The unit circle S in has equation x> + z> =1 or z2 =1 — x.

Its ambient space is R? with the Euclidean metric and ordinary scalar
product:

I

(x1,21)-(x2,22)=x1x0+ 2122, ||(x,2)||*=(x,2)-(x,z),distance(u,v)=||u—V]|.

S is parametrized by the trigonometric functions: x = cost and
z = sint. The distance along S! from P(cosa,sina) to
Q(cos(a % t),sin(a % t)) is t = cos (P - Q) (provided t < 7).

H is analogous to S*, with equation z? = 1 + x? (and z > 0).
The expression x> — z2 determines the Lorentz pseudometric and the
Lorentz scalar product defined by

(x, 2)IIF = (x.2) -1 (x,2) = x* = 22,

(le Zl) L (X2v 22) = X1X2 — 2122,

The hyperbolic trig functions parametrize 7{: x = sinhs, z = cosh s.
When s = 0, this gives the point (0,1), when s = In2 it gives (% %)
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The ambient space of H is Lorentz space, which is R? equipped with the
Lorentz pseudometric, in which the squared length of the vector (x, z) is
x? — z2. This is positive only if |x| > |z|. If P and @ are points of H,
then the vector PQ has positive squared length.

m (sinh s, cosh s) is the point that is reached by
travelling a distance s in the Lorentz pseudometric
from (1,0) along # in the direction of increasing x.
(In the other direction it's (—sinh s, cosh s)).

m (cost,sint) is the point reached by travelling a
distance t in the Euclidean metric counter-clockwise
along St from (1,0).

Hyperbolic Distance The (Lorentz) distance in H from P(sinh s;, cosh s1)
to Q(sinh s, cosh sp) is |s; — s1|. In terms of the coordinates of P and Q,
this is cosh 1(—P -, Q) since

—P - Q = cosh s; cosh s, — sinh s sinh s; = cosh(s; — s1).
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Hyperbolic Distance

For points P and Q of H, distance, (P, Q) = cosh }(—P -, Q).
For points R and S of S!, their distance apart in St is cos™!(R - S),
where - is the ordinary (Euclidean) scalar product.

Warning Our picture of H does not represent hyperbolic distance
accurately. The representation of H as the set of points in R? satisfying
z? = x> + 1 is not an isometric embedding of H in R?. Pairs of points
that are the same distance apart in H do not appear so in the picture.
Example As s increases from 0(= In1) to

In2, (sinhs, cosh s) goes from (0, 1) to 2
(2,2). As s increases from In2 to :
2In2 =In4, (sinh s, cosh s) goes from .
(3.3) to (8. ). Both of these arcs of H
have (hyperbolic) length equal to In2. I : ; 3
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Isometries of St

Definition An isometry of St is a function
from S! to S that preserves distance along z 05
arcs. This means: if a, b are points of st
with images &', b/, then

distancesi(a, b) = distancegi(d’, b).
Equivalently a- b = 4’ - b/, if points of S!
are considered as unit vectors in R?.

There are two types of isometries of S!: rotations about the origin
through any angle, and reflections in any diameter. Both arise from
linear transformations of R? with standard matrices as follows:

. cosa —sina (cost,sint) —
m Rotation R,: . , ' .
¢ sina cosa (cos(t + ), sin(t + o))
m Reflection M, in the diameter through (cos 5, sin §):
COoS & sin o ) .
) . (cost,sint) = (cos(aw — t),sin(av — t
(Soma e ) > (cos(a — 1), sin(a — )

All these matrices comprise the orthogonal group O(2).
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Isometries of H

Definition An isometry of H is a function 5
from S! to S! that preserves Lorentz

distance along arcs. This means: if a, b are .
points of S with images &', b’, then

distz?mceH(a, b) = distancey (a’, b'). R S ST
Equivalently a-; b=2a" -, b'. x

One isometry of H is the Lorentz translation T,, which maps

(sinh s, cosh s) to (sinh(s + «), cosh(s + «)) for a fixed a € R.

The distance in H between (sinh sq, cosh s1) and (sinh sy, cosh sp) is
|s1 — 2|, the same as |(s1 + «) — (52 + @)|.

The T, are analogous to rotations in S, and also arise from linear
transformations of R2.

The standard matrix of T, : R? — R? is ( coshasinh o )

sinha cosh «
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Isometries of H

Definition An isometry of H is a function

from S! to S! that preserves Lorentz

distance along arcs. This means: if a, b are .
points of S with images &', b’, then

distz?mceH(a, b) = distancey (a’, b'). R S ST
Equivalently a-; b=2a" -, b'. x

The reflection My in (0,1) mapping H — H via
(sinh s, coshs) — (—sinhs, cosh s).

01
For a € R, the reflection M,, of H fixes (sinh §, cosh &) and maps

This restricts the reflection of R? in the z-axis, with matrix ( -10 >

(sinh's, cosh s) — (sinh(a — s), cosh(a — s)) .

—cosha  sinha >

M, preserves distance in H{ and has matrix .
—sinha cosh a
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Linear Algebra and/or Group Theory Interpretation

The set of matrices T, and M, describing isometries of H also forms a

group, known as the Lorentz group. For a pair of vectors u = (Z) and

v = (Z) in R? their ordinary and Lorentz inner products are respectively
given by the matrix products

lu-v(a b)(cl) (1)><§,>:ulev:uTv.

muv(a b)<(1) _(1’><§>:un2v.

Lo
Suppose that T : R?> — R? preserves the ordinary scalar product. Then
for any vectors u,v € R?, T(u)- T(v) =u-v.
If M+ is the matrix of T, this means for all u and v that

(Mu)Tlg(l\/Iv) =u"hyv= u"M" Mv=uTv,

for all u,v € R2. This mean MTM =k, so M~1 = MT,
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