Euclidean and non-Euclidean Geometry (MA3101) Lecture 11: Introduction to Hyperbolic Geometry

Dr Rachel Quinlan

October 23, 2024

The hyperbola $-x^2 + z^2 = 1$ in \mathbb{R}^2

The picture below show the unit circle $x^2 + z^2 = 1$, the hyperbola $-x^2 + z^2 = 1$ (along with its asymptotes $y = \pm x$) and the upper branch $\mathcal{H}\colon z=\sqrt{\mathsf{x}^2-1}$ of the hyperbola (this is the part that we will care about).

How to parametrize the (upper branch of the) hyperbola? Its points all have positive z-coordinate. For any positive a,

$$
-\left(a-\frac{1}{a}\right)^2+\left(a+\frac{1}{a}\right)^2=4,
$$

 $\left(\frac{1}{2}\left(a-\frac{1}{a}\right)\right), \left(\frac{1}{2}\left(a+\frac{1}{a}\right)\right)$ is a point of H.

so

Dr Rachel Quinlan 2 / 10 and 2 / 10

Parametrization of H

For $a > 0$, the point with coordinates $\sqrt{1}$ 2 $\left(a-\frac{1}{a}\right)$ a $\Big\}$, $\frac{1}{2}$ 2 $\left(a+\frac{1}{a}\right)$ a \setminus

belongs to H .

 $a-\frac{1}{a}$ $\frac{1}{a}$ is a continuous increasing function of a for $a > 0$ (check this).

$$
a - \frac{1}{a} \to -\infty
$$
 as $a \to 0^+$, and $a - \frac{1}{a} \to \infty$ as $a \to \infty$.

It follows that every point of H has these coordinates for some a. Now write $a = e^s$ (we can do this since a is positive). Then H consists of all points of the form

$$
\left(\frac{e^s-e^{-s}}{2},\frac{e^s+e^{-s}}{2}\right)=(\sinh s,\cosh s), s\in\mathbb{R}.
$$

The Hyperbolic Trigonometric Functions

Definition The hyperbolic sine and cosine functions (usually pronounced "sinch" and "cosh") are defined for $s \in \mathbb{R}$ by

$$
\sinh s = \frac{1}{2}(e^s - e^{-s}), \cosh s = \frac{1}{2}(e^s + e^{-s}).
$$

Properties

- **1** sinh and cosh describe coordinates of points of the unit hyperbola, the way that sin and cos describe points on the circle.
- 2 $\cosh(-s) = \cosh(s)$ and $\sinh(-s) = -\sinh(s)$, for $s \in \mathbb{R}$.
- \mathbf{s} sinh 2 s $-$ cosh 2 s $=$ -1 (or cosh 2 s $-$ sinh 2 s $=$ 1), for all s \in $\mathbb{R}.$
- $\frac{d}{ds}(\sinh s) = \cosh s$ and $\frac{d}{ds}(\cosh s) = \sinh s$. This is one rationale for using coordinates cosh and sinh instead of the previously suggested $\frac{1}{2}(a\pm\frac{1}{a})$ $\frac{1}{a}$) for $a > 0$.
- **5** For s, $t \in \mathbb{R}$, cosh s cosh $t \sinh s \sinh t = \cosh(t s)$.
- 6 And many more analogues of trigonometric identities, that we don't need too urgently.
- All of these can be proved directly from the definitions.

${\mathcal H}$ and ${\mathcal S}^1$ (the unit circle) in the x z-plane

The unit circle S^1 in has equation $x^2 + z^2 = 1$ or $z^2 = 1 - x^2$. Its ambient space is \mathbb{R}^2 with the Euclidean metric and ordinary scalar product:

 $(x_1, z_1) \cdot (x_2, z_2) = x_1x_2 + z_1z_2$, $||(x,z)||^2 = (x,z) \cdot (x,z)$, distance $(u,v) = ||u-v||$.

 S^1 is parametrized by the trigonometric functions: $x = \cos t$ and $z = \sin t$. The distance along S^1 from $P(\cos\alpha,\sin\alpha)$ to $Q(\cos(\alpha \pm t), \sin(\alpha \pm t))$ is $t = \cos^{-1}(P \cdot Q)$ (provided $t < \pi$). ${\cal H}$ is analogous to ${\cal S}^1$, with equation $z^2=1+x^2$ (and $z>0).$ The expression $x^2 - z^2$ determines the Lorentz pseudometric and the Lorentz scalar product defined by

$$
(x_1, z_1) \cdot_L (x_2, z_2) = x_1x_2 - z_1z_2, ||(x, z)||^2_L = (x, z) \cdot_L (x, z) = x^2 - z^2.
$$

The hyperbolic trig functions parametrize $\mathcal{H}: x = \sinh s$, $z = \cosh s$. When $s=0$, this gives the point $(0,1)$, when $s=\ln 2$ it gives $(\frac{3}{4},\frac{5}{4})$ $\frac{5}{4}$.

$\mathcal H$ and $\mathcal S^1$

The ambient space of ${\mathcal H}$ is Lorentz space, which is ${\mathbb R}^2$ equipped with the Lorentz pseudometric, in which the squared length of the vector (x, z) is x^2-z^2 . This is positive only if $|x|>|z|$. If P and Q are points of $\mathcal{H},$ then the vector PQ has positive squared length.

> \blacksquare (sinh s, cosh s) is the point that is reached by travelling a distance s in the Lorentz pseudometric from $(1, 0)$ along H in the direction of increasing x. (In the other direction it's $(-\sinh s, \cosh s)$).

> \blacksquare (cos t, sin t) is the point reached by travelling a distance t in the Euclidean metric counter-clockwise along S^1 from $(1,0)$.

Hyperbolic Distance The (Lorentz) distance in H from $P(\sinh s_1, \cosh s_1)$ to $Q(\sinh s_2, \cosh s_2)$ is $|s_2 - s_1|$. In terms of the coordinates of P and Q, this is $\mathsf{cosh}^{-1}(-P \cdot_L Q)$ since

 $-P \cdot L Q = \cosh s_1 \cosh s_2 - \sinh s_1 \sinh s_2 = \cosh(s_2 - s_1).$

Hyperbolic Distance

For points P and Q of H, distance $_L(P,Q) = \cosh^{-1}(-P \cdot_L Q)$. For points R and S of S^1 , their distance apart in S^1 is $\cos^{-1}(R\cdot S)$, where \cdot is the ordinary (Euclidean) scalar product.

Warning Our picture of H does not represent hyperbolic distance accurately. The representation of ${\cal H}$ as the set of points in \mathbb{R}^2 satisfying $z^2 = x^2 + 1$ is not an isometric embedding of ${\mathcal H}$ in ${\mathbb R}^2$. Pairs of points that are the same distance apart in H do not appear so in the picture.

Example As s increases from $0(=\ln 1)$ to In 2, (sinh s , cosh s) goes from $(0, 1)$ to $(\frac{3}{4})$ $\frac{3}{4}$, $\frac{5}{4}$ $\frac{5}{4}$). As *s* increases from ln 2 to $2 \ln 2 = \ln 4$, (sinh s, cosh s) goes from $\left(\frac{3}{4}\right)$ $\frac{3}{4}$, $\frac{5}{4}$ $\frac{5}{4}$) to $(\frac{15}{8}, \frac{17}{8})$ $\frac{17}{8}$). Both of these arcs of \mathcal{H} have (hyperbolic) length equal to ln 2.

Isometries of S^1

Definition An isometry of S^1 is a function from S^1 to S^1 that preserves distance along arcs. This means: if *a*, *b* are points of S^1 with images *a'*, *b'*, then $\mathsf{distance}_{\mathsf{S}^1}(\mathsf{a},\mathsf{b}) = \mathsf{distance}_{\mathsf{S}^1}(\mathsf{a}',\mathsf{b}').$ Equivalently $a \cdot b = a' \cdot b'$, if points of S^1 are considered as unit vectors in \mathbb{R}^2 .

There are two types of isometries of S^1 : rotations about the origin through any angle, and reflections in any diameter. Both arise from linear transformations of \mathbb{R}^2 with standard matrices as follows:

Rotation R_{α} : $\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$ sin α cos α $\Bigg\}, \begin{array}{c} (\cos t, \sin t) \rightarrow \\ (\cos(t + \cos t) \sin t) \end{array}$ $(\cos(t + \alpha), \sin(t + \alpha))$ Reflection M_{α} in the diameter through (cos $\frac{\alpha}{2}$, sin $\frac{\alpha}{2}$): $\int \cos \alpha$ sin α sin α – cos α $\Big),\,(\cos t,\sin t)\rightarrow(\cos(\alpha-t),\sin(\alpha-t))$ All these matrices comprise the orthogonal group $O(2)$.

Dr Rachel Quinlan MA3101 Lecture 11 8 / 10

Definition An isometry of H is a function from S^1 to S^1 that preserves Lorentz distance along arcs. This means: if a , b are points of S^1 with images $a',$ $b',$ then $\mathsf{distance}_{\mathcal{H}}(a,b) = \mathsf{distance}_{\mathcal{H}}(a',b').$ Equivalently $a \cdot_L b = a' \cdot_L b'$.

One isometry of H is the Lorentz translation T_{α} , which maps (sinh s, cosh s) to (sinh(s + α), cosh(s + α)) for a fixed $\alpha \in \mathbb{R}$.

The distance in H between (sinh s_1 , cosh s_1) and (sinh s_2 , cosh s_2) is $|s_1 - s_2|$, the same as $|(s_1 + \alpha) - (s_2 + \alpha)|$.

The $\, T_{\alpha}$ are analogous to rotations in S^1 , and also arise from linear transformations of \mathbb{R}^2 .

$$
\text{The standard matrix of } \mathcal{T}_\alpha: \mathbb{R}^2 \to \mathbb{R}^2 \text{ is } \left(\begin{array}{cc} \cosh \alpha & \sinh \alpha \\ \sinh \alpha & \cosh \alpha \end{array} \right)
$$

Definition An isometry of H is a function from S^1 to S^1 that preserves Lorentz distance along arcs. This means: if a , b are points of S^1 with images $a',$ $b',$ then $\mathsf{distance}_{\mathcal{H}}(a,b) = \mathsf{distance}_{\mathcal{H}}(a',b').$ Equivalently $a \cdot_L b = a' \cdot_L b'$.

 $-$ sinh α cosh α

The reflection M_0 in (0, 1) mapping $H \rightarrow H$ via $(\sinh s, \cosh s) \rightarrow (-\sinh s, \cosh s).$

This restricts the reflection of \mathbb{R}^2 in the z-axis, with matrix $\left(\begin{array}{cc} -1 & 0 \ 0 & 1 \end{array} \right)$. For $\alpha\in\mathbb{R}$, the reflection M_{α} of $\mathcal H$ fixes (sinh $\frac{\alpha}{2},$ cosh $\frac{\alpha}{2})$ and maps $(\sinh s, \cosh s) \rightarrow (\sinh(\alpha - s), \cosh(\alpha - s))$.

 M_{α} preserves distance in H and has matrix $\begin{pmatrix} -\cosh\alpha & \sinh\alpha \\ \sinh\alpha & \cosh\alpha \end{pmatrix}$

.

Linear Algebra and/or Group Theory Interpretation

The set of matrices T_{α} and M_{α} describing isometries of H also forms a group, known as the Lorentz group. For a pair of vectors $u = \binom{a}{b}$ $\binom{a}{b}$ and

 $v = \begin{pmatrix} c \\ d \end{pmatrix}$ σ_d^c) in \mathbb{R}^2 their ordinary and Lorentz inner products are respectively given by the matrix products

$$
\mathbf{u} \cdot \mathbf{v} \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = u^T I_2 v = u^T v.
$$

$$
\mathbf{u} \cdot \mathbf{u} \cdot \mathbf{v} \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = u^T L_2 v.
$$

Suppose that $\mathcal{T}:\mathbb{R}^2\to\mathbb{R}^2$ preserves the ordinary scalar product. Then for any vectors $u, v \in \mathbb{R}^2$, $\mathcal{T}(u) \cdot \mathcal{T}(v) = u \cdot v$.

If M_T is the matrix of T, this means for all u and v that

$$
(Mu)^{T} I_{2}(Mv) = u^{T} I_{2}v \Longrightarrow u^{T} M^{T} Mv = u^{T} v,
$$

for all $u, v \in \mathbb{R}^2$. This mean $M^TM = I_2$, so $M^{-1} = M^T$.