Euclidean and non-Euclidean Geometry (MA3101) Lecture 11: Introduction to Hyperbolic Geometry

Dr Rachel Quinlan

October 23, 2024

The hyperbola $-x^2 + z^2 = 1$ in \mathbb{R}^2

The picture below show the unit circle $x^2 + z^2 = 1$, the hyperbola $-x^2 + z^2 = 1$ (along with its asymptotes $y = \pm x$) and the upper branch \mathcal{H} : $z = \sqrt{x^2 - 1}$ of the hyperbola (this is the part that we will care about).

How to parametrize the (upper branch of the) hyperbola? Its points all have positive *z*-coordinate. For any positive *a*,

$$-\left(a-\frac{1}{a}\right)^2 + \left(a+\frac{1}{a}\right)^2 = 4$$
so $\left(\frac{1}{2}\left(a-\frac{1}{a}\right)\right)$, $\left(\frac{1}{2}\left(a+\frac{1}{a}\right)\right)$ is a point of \mathcal{H} .

Dr Rachel Quinlan

Parametrization of ${\cal H}$

For a > 0, the point with coordinates $\left(\frac{1}{2}\left(a - \frac{1}{a}\right), \frac{1}{2}\left(a + \frac{1}{a}\right)\right)$

belongs to \mathcal{H} .

 $a - \frac{1}{a}$ is a continuous increasing function of a for a > 0 (check this).

$$a - \frac{1}{a} \to -\infty$$
 as $a \to 0^+$, and $a - \frac{1}{a} \to \infty$ as $a \to \infty$.

It follows that every point of \mathcal{H} has these coordinates for some a. Now write $a = e^s$ (we can do this since a is positive). Then \mathcal{H} consists of all points of the form

$$\left(rac{e^s-e^{-s}}{2},rac{e^s+e^{-s}}{2}
ight)=(\sinh s,\cosh s),s\in\mathbb{R}.$$

The Hyperbolic Trigonometric Functions

Definition The hyperbolic sine and cosine functions (usually pronounced "sinch" and "cosh") are defined for $s \in \mathbb{R}$ by

$$\sinh s = \frac{1}{2}(e^s - e^{-s}), \ \cosh s = \frac{1}{2}(e^s + e^{-s}).$$

Properties

- sinh and cosh describe coordinates of points of the unit hyperbola, the way that sin and cos describe points on the circle.
- 2 $\cosh(-s) = \cosh(s)$ and $\sinh(-s) = -\sinh(s)$, for $s \in \mathbb{R}$.
- 3 $\sinh^2 s \cosh^2 s = -1$ (or $\cosh^2 s \sinh^2 s = 1$), for all $s \in \mathbb{R}$.
- ^d/_{ds}(sinh s) = cosh s and ^d/_{ds}(cosh s) = sinh s. This is one rationale for using coordinates cosh and sinh instead of the previously suggested ¹/₂(a ± ¹/_a) for a > 0.
- 5 For $s, t \in \mathbb{R}$, $\cosh s \cosh t \sinh s \sinh t = \cosh(t s)$.
- 6 And many more analogues of trigonometric identities, that we don't need too urgently.

All of these can be proved directly from the definitions.

Dr Rachel Quinlan

\mathcal{H} and S^1 (the unit circle) in the xz-plane

The unit circle S^1 in has equation $x^2 + z^2 = 1$ or $z^2 = 1 - x^2$. Its ambient space is \mathbb{R}^2 with the Euclidean metric and ordinary scalar product:

 $(x_1,z_1)\cdot(x_2,z_2)=x_1x_2+z_1z_2, ||(x,z)||^2=(x,z)\cdot(x,z), distance(u,v)=||u-v||.$

 S^1 is parametrized by the trigonometric functions: $x = \cos t$ and $z = \sin t$. The distance along S^1 from $P(\cos \alpha, \sin \alpha)$ to $Q(\cos(\alpha \pm t), \sin(\alpha \pm t))$ is $t = \cos^{-1}(P \cdot Q)$ (provided $t < \pi$). \mathcal{H} is analogous to S^1 , with equation $z^2 = 1 + x^2$ (and z > 0). The expression $x^2 - z^2$ determines the Lorentz pseudometric and the Lorentz scalar product defined by

$$(x_1, z_1) \cdot_L (x_2, z_2) = x_1 x_2 - z_1 z_2, \ ||(x, z)||_L^2 = (x, z) \cdot_L (x, z) = x^2 - z^2$$

The hyperbolic trig functions parametrize \mathcal{H} : $x = \sinh s$, $z = \cosh s$. When s = 0, this gives the point (0, 1), when $s = \ln 2$ it gives $(\frac{3}{4}, \frac{5}{4})$.

${\mathcal H}$ and S^1

The ambient space of \mathcal{H} is Lorentz space, which is \mathbb{R}^2 equipped with the Lorentz pseudometric, in which the squared length of the vector (x, z) is $x^2 - z^2$. This is positive only if |x| > |z|. If P and Q are points of \mathcal{H} , then the vector \vec{PQ} has positive squared length.

- (sinh s, cosh s) is the point that is reached by travelling a distance s in the Lorentz pseudometric from (1,0) along H in the direction of increasing x. (In the other direction it's (-sinh s, cosh s)).
- (cos t, sin t) is the point reached by travelling a distance t in the Euclidean metric counter-clockwise along S¹ from (1,0).

Hyperbolic Distance The (Lorentz) distance in \mathcal{H} from $P(\sinh s_1, \cosh s_1)$ to $Q(\sinh s_2, \cosh s_2)$ is $|s_2 - s_1|$. In terms of the coordinates of P and Q, this is $\cosh^{-1}(-P \cdot Q)$ since

 $-P \cdot_L Q = \cosh s_1 \cosh s_2 - \sinh s_1 \sinh s_2 = \cosh(s_2 - s_1).$

Hyperbolic Distance

For points P and Q of \mathcal{H} , distance_L(P, Q) = cosh⁻¹(-P $\cdot_L Q$). For points R and S of S¹, their distance apart in S¹ is cos⁻¹(R \cdot S), where \cdot is the ordinary (Euclidean) scalar product.

Warning Our picture of \mathcal{H} does not represent hyperbolic distance accurately. The representation of \mathcal{H} as the set of points in \mathbb{R}^2 satisfying $z^2 = x^2 + 1$ is not an isometric embedding of \mathcal{H} in \mathbb{R}^2 . Pairs of points that are the same distance apart in \mathcal{H} do not appear so in the picture.

Example As *s* increases from $0(= \ln 1)$ to ln 2, (sinh *s*, cosh *s*) goes from (0, 1) to $(\frac{3}{4}, \frac{5}{4})$. As *s* increases from ln 2 to $2 \ln 2 = \ln 4$, (sinh *s*, cosh *s*) goes from $(\frac{3}{4}, \frac{5}{4})$ to $(\frac{15}{8}, \frac{17}{8})$. Both of these arcs of \mathcal{H} have (hyperbolic) length equal to ln 2.

Isometries of S^1

Definition An isometry of S^1 is a function from S^1 to S^1 that preserves distance along arcs. This means: if a, b are points of S^1 with images a', b', then distance_{S1}(a, b) = distance_{S1}(a', b'). Equivalently $a \cdot b = a' \cdot b'$, if points of S^1 are considered as unit vectors in \mathbb{R}^2 .

There are two types of isometries of S^1 : rotations about the origin through any angle, and reflections in any diameter. Both arise from linear transformations of \mathbb{R}^2 with standard matrices as follows:

Rotation R_{α} : $\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}, \quad \begin{pmatrix} \cos t, \sin t \end{pmatrix} \rightarrow \\ (\cos t, \sin t) \rightarrow (\cos(t+\alpha), \sin(t+\alpha)) \end{pmatrix}$ Reflection M_{α} in the diameter through $(\cos \frac{\alpha}{2}, \sin \frac{\alpha}{2})$: $\begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix}, \quad (\cos t, \sin t) \rightarrow (\cos(\alpha - t), \sin(\alpha - t)) \end{pmatrix}$

All these matrices comprise the orthogonal group O(2).

Dr Rachel Quinlan

Definition An isometry of \mathcal{H} is a function from S^1 to S^1 that preserves Lorentz distance along arcs. This means: if a, b are points of S^1 with images a', b', then distance_{\mathcal{H}} $(a, b) = distance_{\mathcal{H}}(a', b')$. Equivalently $a \cdot_L b = a' \cdot_L b'$.

One isometry of \mathcal{H} is the Lorentz translation \mathcal{T}_{α} , which maps $(\sinh s, \cosh s)$ to $(\sinh(s + \alpha), \cosh(s + \alpha))$ for a fixed $\alpha \in \mathbb{R}$.

The distance in \mathcal{H} between $(\sinh s_1, \cosh s_1)$ and $(\sinh s_2, \cosh s_2)$ is $|s_1 - s_2|$, the same as $|(s_1 + \alpha) - (s_2 + \alpha)|$.

The T_{α} are analogous to rotations in S^1 , and also arise from linear transformations of \mathbb{R}^2 .

The standard matrix of $T_{\alpha} : \mathbb{R}^2 \to \mathbb{R}^2$ is $\begin{pmatrix} \cosh \alpha & \sinh \alpha \\ \sinh \alpha & \cosh \alpha \end{pmatrix}$

Definition An isometry of \mathcal{H} is a function from S^1 to S^1 that preserves Lorentz distance along arcs. This means: if a, b are points of S^1 with images a', b', then distance_{\mathcal{H}} $(a, b) = distance_{\mathcal{H}}(a', b')$. Equivalently $a \cdot_L b = a' \cdot_L b'$.

The reflection M_0 in (0, 1) mapping $\mathcal{H} \to \mathcal{H}$ via $(\sinh s, \cosh s) \to (-\sinh s, \cosh s)$.

This restricts the reflection of \mathbb{R}^2 in the *z*-axis, with matrix $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$. For $\alpha \in \mathbb{R}$, the reflection M_{α} of \mathcal{H} fixes $(\sinh \frac{\alpha}{2}, \cosh \frac{\alpha}{2})$ and maps $(\sinh s, \cosh s) \rightarrow (\sinh(\alpha - s), \cosh(\alpha - s))$.

 M_{α} preserves distance in \mathcal{H} and has matrix $\begin{pmatrix} -\cosh \alpha & \sinh \alpha \\ -\sinh \alpha & \cosh \alpha \end{pmatrix}$.

Linear Algebra and/or Group Theory Interpretation

The set of matrices T_{α} and M_{α} describing isometries of \mathcal{H} also forms a group, known as the Lorentz group. For a pair of vectors $u = \begin{pmatrix} a \\ b \end{pmatrix}$ and

 $v = \begin{pmatrix} c \\ d \end{pmatrix}$ in \mathbb{R}^2 their ordinary and Lorentz inner products are respectively given by the matrix products

$$u \cdot v \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = u^T l_2 v = u^T v$$
$$u \cdot v \begin{pmatrix} a & b \end{pmatrix} \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}}_{L_2} \begin{pmatrix} c \\ d \end{pmatrix} = u^T L_2 v.$$

Suppose that $T : \mathbb{R}^2 \to \mathbb{R}^2$ preserves the ordinary scalar product. Then for any vectors $u, v \in \mathbb{R}^2$, $T(u) \cdot T(v) = u \cdot v$.

If M_T is the matrix of T, this means for all u and v that

$$(Mu)^{T} l_{2}(Mv) = u^{T} l_{2} v \Longrightarrow u^{T} M^{T} Mv = u^{T} v,$$

for all $u, v \in \mathbb{R}^2$. This mean $M^T M = I_2$, so $M^{-1} = M^T$.