
Chapter 3

Ideals, Homomorphisms and Factor
Rings

3.1 Lecture 10: Ring Homomorphisms and Ideals

In this section we develop some more of the abstract theory of rings. In particular we will describe
those functions between rings that preserve the ring structure, and we will look at another way
of forming new rings from existing ones.

Definition 30. Let R be a ring. A non-empty subset S of R is a subring of R if it is itself a ring under the
addition and multiplication of R, with the same multiplicative identity element as R.

This means that S is closed under the addition and multiplication of R, that it contains the zero
element and multiplicative identity element of R, and that it contains the negative of each of its
elements.
Examples

1. Z is a subring of Q.
Q is a subring of R.
R is a subring of C.

2. The ring Mn(F) of n× n matrices over a field F has the following subrings :

• Dn(F) - the ring of diagonal n× n matrices over F.

• Un(F) - the ring of upper triangular n× n matrices over F.

3. For any field F, F is a subring of the polynomial ring F[X]. So also is F[X2], the subset of F[X]
consisting of those polynomials in which the coefficient of Xi is zero whenever i is odd.

4. Every (non-zero) ring R is a subring of itself. Subrings of R that are not equal to R are called
proper subrings.

Definition 31. Let R and S be rings. A function φ : R −→ S is a ring homomorphism if φ(1R) = 1S

and for all x,y ∈ R we have
φ(x+ y) = φ(x) + φ(y)

and
φ(xy) = φ(x)φ(y).

Examples
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1. Choose a positive integer n and define φn : Z → Z/nZ to be the function that sends k ∈ Z
to the congruence class modulo n to which k belongs. Then φn is a ring homomorphism.

2. Let F be a field. If a ∈ F we can define a homomorphism

φa : F[x] −→ F

given by φa(f(x)) = f(a) for f(x) ∈ F[x].

Exercise: Determine whether each of the following is a ring homomorphism :

1. The function det : M2(Q) −→ Q that associates to every matrix its determinant.

2. The function g : Z −→ Z defined by g(n) = 2n, for n ∈ Z.

3. The function φ : Q[x] −→ Q defined for f(X) ∈ Q[x] by

φ(f(X)) = the sum of the coefficients of f(x).

Definition 32. Suppose that φ : R −→ S is a homomorphism of rings. The kernel of φ is the subset of R
defined by

kerφ = {r ∈ R : φ(r) = 0S}.

The image of φ is the subset of S defined by

Imφ = {s ∈ S : s = φ(r) for some r ∈ R}.

Lemma 33. Imφ is a subring of S.

Proof: First we need to show that Imφ is closed under the addition and multiplication of S. So
suppose that s1, s2 are elements of Imφ and let r1, r2 be elements of R for which s1 = φ(r1) and
s2 = φ(r2). Then

φ(r1 + r2) = φ(r1) + φ(r2) = s1 + s2

and so s1 + s2 ∈ Imφ. Also
φ(r1r2) = φ(r1)φ(r2) = s1s2

and so s1s2 ∈ Imφ.
Next we show that 0S ∈ Imφ. To see this observe that

φ(0R) + φ(0r) = φ(0R + 0R) = φ(0R).

Subtracting the element φ(0R) of S from both sides gives

φ(0R) = 0S.

Thus 0S ∈ Imφ - in fact we have proved something more than this, namely that 0S is the image of
0R.

Next we show that Imφ contains the additive inverse in S of each of its elements. Let s ∈ Imφ
and let r be an element of R for which φ(r) = s. Then

φ(−r) + φ(r) = φ(0R) = 0S.

Thus φ(−r) is the additive inverse of s in S, i.e. −s = φ(−r) and Imφ contains the negative of
each of its elements.
Finally 1S ∈ Imφ by definition, since φ(1R) = 1S. �
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Lemma 34. kerφ is closed under addition, subtraction, and multiplication in R.

Remark: This is saying that kerφ is “almost” a subring of R. The only way that it fails to be a
subring is that it generally does not contain the multiplicative identity element of R.
Proof: Let r1, r2 ∈ kerφ. Then φ(r1) = φ(r2) = 0S. We have

φ(r1 + r2) = φ(r1) + φ(r2) = 0S + 0S = 0S,
and φ(r1r2) = φ(r1)φ(r2) = 0S0S = 0S.

Thus kerφ is closed under addition and multiplication in R.
To see that 0R ∈ kerφ we note that φ(0R) = 0S by the proof of Lemma 33 above. Finally if

r ∈ kerφ then
0S = φ(−r+ r) = φ(−r) + φ(r) = φ(−r) + 0S = φ(−r)

and so φ(−r) = 0 and −r ∈ kerφ. This completes the proof. �
In fact kerφ has an extra strong closure property for multplication in R. Suppose r ∈ kerφ

and let x be any element of R. Then xr and rx belong to kerφ, since

φ(xr) = φ(x)φ(r) = φ(x)0S = 0S,
φ(rx) = φ(r)φ(x) = 0Sφ(x) = 0S.

So not only is kerφ closed under its own multiplication, it is also closed under the operation
of multiplying an element of kerφ by any element of R.

Definition 35. Let R be a ring.
A left ideal of R is a subset IL of R that is closed under addition, subtraction and multiplication, with the
property that xa ∈ IL whenever a ∈ IL and x ∈ R.
A right ideal of R is a a subset IR of R that is closed under addition, subtraction and multiplication, with
the property that ax ∈ IR whenever a ∈ IR and x ∈ R.
A two-sided ideal (or just ideal) of R is a subset I of R that is closed under addition, subtraction and
multiplication, with the additional property that both xa and ax are in I whenever a ∈ I and x ∈ R.

Exercise: Find some examples of left, right, or two-sided ideals in each of the following rings :

Z, Q, Q[x], Z[x], M2(Q).

Notes

1. If R is commutative then every left or right ideal of R is a two-sided ideal. We do not talk
about two-sided ideals in this case, just ideals.

2. (Two-sided) ideals play a role in ring theory similar to that played by normal subgroups in
group theory.

Examples

1. Let R be a ring. We have already seen that the kernel of any ring homomorphism with
domain R is a (two-sided) ideal of R.

2. The subrings

2Z = {. . . ,−2, 0, 2, 4, . . . }
3Z = {. . . ,−3, 0, 3, 6, . . . }
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are ideals of Z. In general if n ∈ Z we will denote by nZ or �n� the subring of Z consisting
of all the integer multiples of n. In each case �n� is an ideal of Z, since a multiple of n can
be multiplied by any integer and the result is always a multiple of n.

Note that �n� is the kernel of the homomorphism φn : Z −→ Z/nZ that sends k ∈ Z to the
class of k modulo n.

3. Fix a polynomial f(x) ∈ Q[x]. We denote by �f(x)� the subring of Q[x] consisting of all those
polynomials of the form g(x)f(x) for an element g(x) of Q[x]. Then �f(x)� is an ideal of Q[x]
(called the principal ideal generated by f(x)).

4. Let R be any ring and let a ∈ R. We define

Ra = {ra : r ∈ R}.

Then Ra is a left ideal of R called the principal left ideal generated by a. Similarly aR = {ar :
r ∈ R} is the principal right ideal generated by a.
If R is commutative then aR = Ra for all a ∈ R, and this ideal is called the principal ideal
generated by a. It is denoted by �a�. In Z, nZ is the principal ideal generated by n.
In general an ideal in a commutative ring is called principal if it is the principal ideal gener-
ated by some element.

5. Every non-zero ring R has at least two ideals, namely the full ring R and the zero ideal {0R}.

Lemma 36. Let R be a ring, and let I be an ideal of R. If I contains a unit u of R, then I = R.

Proof: Let u−1 denote the inverse of u in R. Then u ∈ I implies u−1u = 1R belongs to I. Now let
r ∈ R. Then r1R = r belongs to I, so R ⊆ I and R = I. �

Corollary 37. If F is a field, then the only ideals in F are the zero ideal (consisting only of the zero element)
and F itself.
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