
The normal vector and tangent plane to a surface

We’d like to extend the concept of curvature from curves to (smooth)
surfaces and then assert that the plane has (constant) curvature 0, and
that the unit sphere has (constant) curvature +1.

Let S be a smooth surface in R3 (no corners).

Let Q be a point in S .

There are many smooth curves in S through Q.
Somehow the curvature of the surface at Q will be defined in terms of
their curvatures.

Every curve in S through P has a tangent vector at Q.

Claim All of these tangent vectors at Q to curves in S lie in a plane,
called the tangent plane to S at Q.

Being a plane in R3, the tangent plane to S at Q has a normal direction.
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Example: S : z = x2 + 2y 2 (a paraboloid)

Find the equation of the tangent plane to the paraboloid S at the point
Q : (1, 2, 9).

Write f (x , y , z) = x2 + 2y2 − z .
S : f (x , y , z) = 0.
Gradient of f :
∇f =

(
∂f
∂x , ∂f

∂y , ∂f
∂z

)
= (2x , 4y ,−1).

∇(f )|(1,2,9) = (2, 8,−1). This is the normal
vector to P.

Equation of P: (2, 8,−1) · (x − 1, y − 2, z − 9) = 0, 2x + 8y − z = 9.

If a smooth surface S has equation f (x , y , z) =constant, the equation of
the tangent plane P to S at (x0, y0, z0) is

P : ∇f · (x − x0, y − y0, z − z0) = 0
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What happened there?

Let S be a smooth surface in R3, with equation f (x , y , z) =constant.

Let C be a curve in S , parametrized by t → (f1(t), f2(t), f3(t)).

The tangent vector to C is T = (f ′1(t), f ′2(t), f ′3(t)).

On C, f is a function of t via the dependence of x , y , z on t, and it is
constant. Hence (on C)

0 = df
dt = ∂f

∂x
dx
dt + ∂f

∂y
dy
dt + ∂f

∂z
dz
dt = ∇f · T .

This is saying that at any point Q = (x0, y0, z0) where S is smooth, ∇f
(at Q) is orthogonal to the tangent vector at Q of every curve in S that
passes through Q. So ∇f is a normal vector to the tangent plane TQ(S)
of S at Q.

Definition ∇f (at Q) is called a normal vector to the surface S at the
point Q. A unit normal vector is a unit vector in the direction of ∇f .
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Normal Sections

On a smooth surface S , the (unit) normal vector at a point may have
either of two opposite directions. We choose one of these (at a particular
point) to be the unit normal vector, and extend the designation by
requiring that the unit normal vector should vary continuously as we
travel around the surface (so it doesn’t abruptly reverse direction).

This amounts to choosing one “side”of the surface for the normal vector
to point into, and it works provided that S is orientable - it fails on a
Möbius band which is non-orientable.

At a point Q of S , let n be the unit
normal.
Let L be the line through Q in the
direction of n.
Every plane in R3 that contains L
intersects S in a curve (or a point).

picture courtesy of Wikipedia

These curves are the normal sections of S at Q.
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Gaussian Curvature

Let P be any plane in R3 containing
L.
Rotating P about L gives all such
planes,
and all normal sections of S at Q.

In a neighbourhood of Q, each
normal section either lies on the side
of the tangent plane into which n is
directed, or the other side. For one
side or the other, the curvature of a
normal section is given a negative
sign.

picture courtesy of Wikipedia

The normal curvatures of S at Q are the (signed) curvatures of the
normal sections, as curves in R3. The principal curvatures κ1 and κ2 of
S at Q are the maximum and minimum normal curvatures.

Definition The Gaussian curvature κ of S at Q is the product κ1κ2.
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Gaussian Curvature of S2

Definition The Gaussian curvature κ of S at Q is the product κ1κ2.

κ is positive at Q if all normal curvatures at Q have the same sign
(all positive or all negative). This means that Q is a “cap” or a
“cup” in S .

κ is negative at Q if S has normal sections with both positive and
negative curvatures at Q. This means that S is a saddle point.

κ is zero at Q is all the non-zero normal curvatures have the same
sign, and one of the principal curvatures is zero.

Example: The unit sphere S2 : x2 + y2 + z2 = 1.
A normal vector at the point Q (x0, y0, z0) is (x0, y0, z0). The normal
sections are intersections of S2 with planes containing the line OQ. They
are great circles in S2 - circles of radius 1, and curvature 1 in R3. So
κ1 = κ2 = 1 (or both −1 depending on the direction of n). Thus
κ1κ2 = 1 at every point Q of S2.

S2 is a surface of constant Gaussian curvature 1.
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Surfaces of Constant Gaussian Curvature

A sphere of radius R has constant Gaussian curvature 1
R2 .

A plane or cylinder has constant Gaussian curvature 0 (and a
cylinder can be unrolled to a plane).

What about a surface of constant Gaussian curvature −1?

Remark It is not too hard to visualize a surface
where the Gaussian curvature is negative
everywhere, like the picture here. For example take
the surface of revolution obtained by rotating the
hyperbola y = 1

x about the line y = x .

Surfaces like this have negative curvature
everywhere, but not constant.
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