2.2 Lecture 7: Division in the polynomial ring $\mathbb{F}[X]$

Recall the division algorithm in \mathbb{Z} : if \mathfrak{m} is a positive integer and \mathfrak{n} is any integer, then there exist unique integers \mathfrak{q} and \mathfrak{r} (respectively called the quotient and remainder on dividing \mathfrak{n} by \mathfrak{m}) with $0 \leqslant \mathfrak{r} < \mathfrak{m}$ and

$$n = mq + r$$
.

This can be proved by observing that there is exactly one integer multiple of \mathfrak{m} in the interval $[\mathfrak{n}-\mathfrak{m}+1,\mathfrak{n}].$

For a field \mathbb{F} , the polynomial ring $\mathbb{F}[X]$ has many properties in common with the ring \mathbb{Z} of integers. The first of these is a version of the division algorithm.

Definition 17. Let f(X), g(X) be polynomials in $\mathbb{F}[X]$. We say that g(X) divides f(X) in $\mathbb{F}[X]$ if f(X) = g(X)q(X) for some $q(X) \in \mathbb{F}[X]$ (i.e. if f(X) is a multiple of g(X) in $\mathbb{F}[X]$).

We write g(X)|f(X) as a shorthand notation for the statement that g(X) divides f(X). This symbol is a vertical bar - not a dash or a forward or back slash.

Theorem 18. (Division Algorithm in $\mathbb{F}[x]$). Let \mathbb{F} be a field and let f(X) and g(X) be polynomials in $\mathbb{F}[X]$ with $g(X) \neq 0$. Then there exist unique polynomials q(X) and r(X) in $\mathbb{F}[X]$

$$f(X) = g(X)q(X) + r(X).$$

with r(X) = 0 or deg(r(X)) < deg(g(X)).

Notes

- 1. In this situation q(x) and r(x) are called the quotient and remainder upon dividing f(x) by q(x).
- 2. There are two separate assertions to be proved the existence of such a q(x) and r(x), and their uniqueness.

Proof: (Existence) Define S to be the set of all polynomials in $\mathbb{F}[x]$ of the form f(x) - g(x)h(x) where $s(x) \in \mathbb{F}[x]$. So S is the set of all those polynomials in $\mathbb{F}[x]$ that differ from f(x) by a multiple of g(x). Our goal for the existence part of the proof is show that either the zero polynomial belongs to S, or S contains some element whose degree is less than that of g(x).

- 1. If $0 \in S$ then f(x) g(x)h(x) = 0 for some $h(x) \in \mathbb{F}[x]$, so f(x) = g(x)h(x) and we can take g(x) = h(x) and r(x) = 0.
- 2. If $0 \notin S$, let r(x) be an element of minimal degree in S.

Let m denote the degree of g(x) and write

$$g(x) = a_m x^m + a_{m-1} x^{m-1} + \cdots + a_1 x + a_0, \ a_m \neq 0.$$

Let t = deg(r(x)) and write

$$r(x) = b_t x^t + b_{t-1} x^{t-1} + \dots + b_1 x + b_0, \ b_t \neq 0.$$

We claim that t < m. We know since $r(x) \in S$ that there exists a polynomial $h(x) \in \mathbb{F}[x]$ for which

$$r(x) = f(x) - g(x)h(x).$$

Thus

$$b_t X^t + b_{t-1} X^{t-1} + \dots + b_1 X + b_0 = f(X) - g(X)h(X).$$

If $t\geqslant m$ then $t-m\geqslant 0$. Also $a_m\ne 0$ in $\mathbb F$, so a_m has an inverse $1/a_m$ in $\mathbb F$ and the element b_t/a_m belongs to $\mathbb F$. Now subtract the polynomial $g(X)(b_t/a_m)X^{t-m}$ (which has leading term b_tX^t) from both sides of the above equation to get

$$b_{t}X^{t} + \dots + b_{1}X + b_{0} - g(X)(b_{t}/a_{m})X^{t-m} = f(X) - g(X)h(X) - g(X)(b_{t}/a_{m})X^{t-m}.$$

The left side of the above equation is $r_1(X)$, a polynomial of degree less than t in $\mathbb{F}[X]$. The right hand side is $f(X) - g(X)h_1(X)$ where $h_1(X) = h(X) + (b_t/a_m)X^{t-m}$. Thus $r_1(X)$ belongs to S, contrary to the choice of r(X) as an element of minimal degree in S. We conclude that t < m and

$$f(X) = g(X)h(X) + r(X)$$

is a description of f(X) of the required type. This proves the existence.

Things to think about in this fussy proof:

- 1. How do we know that $r_1(X)$ above has degree less than t?
- 2. Why can we conclude that t < m at the third last line above?
- 3. Where does the proof use the fact that \mathbb{F} is a field?

Uniqueness (this is easier to write down): Suppose that

$$\begin{array}{lcl} f(X) & = & g(X)q_1(X) + r_1(X), \ deg(r_1(X)) < m \ or \ r_1(X) = 0 \\ and \ f(X) & = & g(X)q_2(X) + r_2(X), \ deg(r_2(X)) < m \ or \ r_2(X) = 0. \end{array}$$

Then

$$0 = g(X)(q_1(X) - q_2(X)) + (r_1(X) - r_2(X)) \Longrightarrow g(X)(q_1(X) - q_2(X)) = r_2(X) - r_1(X).$$

Now $g(X)(q_1(X)-q_2(X))$ is either zero or a polynomial of degree at least m, and $r_2(X)-r_1(X)$ is either zero or a polynomial of degree less than m. Hence these two can be equal only if they are both zero, which means $q_1(X)=q_2(X)$ (since $g(X)\neq 0$) and $r_1(X)=r_2(X)$. This completes the proof.

Let $f(X) \in R[X]$ for some ring R; suppose

$$f(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0.$$

If $\alpha \in R$ then we let $f(\alpha)$ denote the element

$$a_n \alpha^n + a_{n-1} \alpha^{n-1} + \cdots + a_1 \alpha + a_0$$

of R. Thus associated to the polynomial f(X) we have a function from R to R sending α to $f(\alpha)$. Forming the element $f(\alpha)$ is called *evaluating* the polynomial f(X) at α .

Definition 19. *In the above context,* $\alpha \in R$ *is a* root *of* f(X) *if* $f(\alpha) = 0$.

Theorem 20. (The Factor Theorem) Let f(X) be a polynomial of degree $n \ge 1$ in $\mathbb{F}[X]$ and let $\alpha \in \mathbb{F}$. Then α is a root of f(X) if and only if $X - \alpha$ divides f(X) in $\mathbb{F}[X]$.

Proof: By the division algorithm (Theorem 18), we can write

$$f(X) = q(X)(X - \alpha) + r(X),$$

where $q(X) \in \mathbb{F}[X]$ and either r(X) = 0 or r(X) has degree zero and is thus a non-zero element of \mathbb{F} . So $r(X) \in \mathbb{F}$; we can write $r(X) = \beta$. Now

$$f(\alpha) = q(\alpha)(\alpha - \alpha) + \beta$$
$$= 0 + \beta$$
$$= \beta.$$

Thus $f(\alpha) = 0$ if and only if $\beta = 0$, i.e. if and only if r(X) = 0 and $f(X) = q(X)(X - \alpha)$ which means $X - \alpha$ divides f(X).

Remark: This proves more than the statement of the theorem, it proves that $f(\alpha)$ is the remainder on dividing f(X) by $X - \alpha$ in $\mathbb{F}[X]$.