
2.2 Lecture 7: Division in the polynomial ring F[X]
Recall the division algorithm in Z : if m is a positive integer and n is any integer, then there exist
unique integers q and r (respectively called the quotient and remainder on dividing n by m) with
0 � r < m and

n = mq+ r.

This can be proved by observing that there is exactly one integer multiple of m in the interval
[n−m+ 1,n].

For a field F, the polynomial ring F[X] has many properties in common with the ring Z of
integers. The first of these is a version of the division algorithm.

Definition 17. Let f(X), g(X) be polynomials in F[X]. We say that g(X) divides f(X) in F[X] if f(X) =
g(X)q(X) for some q(X) ∈ F[X] (i.e. if f(X) is a multiple of g(X) in F[X]).

We write g(X)|f(X) as a shorthand notation for the statement that g(X) divides f(X). This
symbol is a vertical bar - not a dash or a forward or back slash.

Theorem 18. (Division Algorithm in F[x]). Let F be a field and let f(X) and g(X) be polynomials in
F[X] with g(X) �= 0. Then there exist unique polynomials q(X) and r(X) in F[X]

f(X) = g(X)q(X) + r(X).

with r(X) = 0 or deg(r(X)) < deg(g(X)).

Notes

1. In this situation q(x) and r(x) are called the quotient and remainder upon dividing f(x) by
g(x).

2. There are two separate assertions to be proved - the existence of such a q(x) and r(x), and
their uniqueness.

Proof: (Existence) Define S to be the set of all polynomials in F[x] of the form f(x) − g(x)h(x)
where s(x) ∈ F[x]. So S is the set of all those polynomials in F[x] that differ from f(x) by a multiple of
g(x). Our goal for the existence part of the proof is show that either the zero polynomial belongs
to S, or S contains some element whose degree is less than that of g(x).

1. If 0 ∈ S then f(x) − g(x)h(x) = 0 for some h(x) ∈ F[x], so f(x) = g(x)h(x) and we can take
q(x) = h(x) and r(x) = 0.

2. If 0 �∈ S, let r(x) be an element of minimal degree in S.

Let m denote the degree of g(x) and write

g(x) = amxm + am−1x
m−1 + · · ·+ a1x+ a0, am �= 0.

Let t = deg(r(x)) and write

r(x) = btx
t + bt−1x

t−1 + · · ·+ b1x+ b0, bt �= 0.

We claim that t < m. We know since r(x) ∈ S that there exists a polynomial h(x) ∈ F[x] for which

r(x) = f(x)− g(x)h(x).

Thus
btX

t + bt−1X
t−1 + · · ·+ b1X+ b0 = f(X)− g(X)h(X).

If t � m then t − m � 0. Also am �= 0 in F, so am has an inverse 1/am in F and the element
bt/am belongs to F. Now subtract the polynomial g(X)(bt/am)Xt−m (which has leading term
btX

t) from both sides of the above equation to get

btX
t + · · ·+ b1X+ b0 − g(X)(bt/am)Xt−m = f(X)− g(X)h(X)− g(X)(bt/am)Xt−m.
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The left side of the above equation is r1(X), a polynomial of degree less than t in F[X]. The right
hand side is f(X) − g(X)h1(X) where h1(X) = h(X) + (bt/am)Xt−m. Thus r1(X) belongs to S,
contrary to the choice of r(X) as an element of minimal degree in S. We conclude that t < m and

f(X) = g(X)h(X) + r(X)

is a description of f(X) of the required type. This proves the existence.

Things to think about in this fussy proof:

1. How do we know that r1(X) above has degree less than t?

2. Why can we conclude that t < m at the third last line above?

3. Where does the proof use the fact that F is a field?

Uniqueness (this is easier to write down): Suppose that

f(X) = g(X)q1(X) + r1(X), deg(r1(X)) < m or r1(X) = 0
and f(X) = g(X)q2(X) + r2(X), deg(r2(X)) < m or r2(X) = 0.

Then

0 = g(X)(q1(X)− q2(X)) + (r1(X)− r2(X)) =⇒ g(X)(q1(X)− q2(X)) = r2(X)− r1(X).

Now g(X)(q1(X) − q2(X)) is either zero or a polynomial of degree at least m, and r2(X) − r1(X) is
either zero or a polynomial of degree less than m. Hence these two can be equal only if they are
both zero, which means q1(X) = q2(X) (since g(X) �= 0) and r1(X) = r2(X). This completes the
proof. �

Let f(X) ∈ R[X] for some ring R; suppose

f(X) = anX
n + an−1X

n−1 + · · ·+ a1X+ a0.

If α ∈ R then we let f(α) denote the element

anα
n + an−1α

n−1 + · · ·+ a1α+ a0

of R. Thus associated to the polynomial f(X) we have a function from R to R sending α to f(α).
Forming the element f(α) is called evaluating the polynomial f(X) at α.

Definition 19. In the above context, α ∈ R is a root of f(X) if f(α) = 0.

Theorem 20. (The Factor Theorem) Let f(X) be a polynomial of degree n � 1 in F[X] and let α ∈ F. Then
α is a root of f(X) if and only if X− α divides f(X) in F[X].

Proof: By the division algorithm (Theorem 18), we can write

f(X) = q(X)(X− α) + r(X),

where q(X) ∈ F[X] and either r(X) = 0 or r(X) has degree zero and is thus a non-zero element of
F. So r(X) ∈ F; we can write r(X) = β. Now

f(α) = q(α)(α− α) + β

= 0 + β

= β.

Thus f(α) = 0 if and only if β = 0, i.e. if and only if r(X) = 0 and f(X) = q(X)(X−α) which means
X− α divides f(X). �

Remark: This proves more than the statement of the theorem, it proves that f(α) is the remainder
on dividing f(X) by X− α in F[X].
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