
Chapter 1

What is a Ring?

1.1 Lecture 1: Some Examples

Here are some sets of mathematical objects in which we can add, subtract and “multiply” ele-
ments together (without leaving the set). All of these are examples of rings. A ring is an alge-
braic structure equipped with two binary operations (generally called addition and multiplica-
tion) with some rules about how those operations behave and how they interact. Details of those
rules are coming in Lecture 2.

1. Z = {. . . ,−2,−1, 0, 1, 2, 3, . . . } - the set of integers.

2. Q =
�

a
b
: a ∈ Z,b ∈ Z,b �= 0

�
- the set of rational numbers.

3. M2(R) - the set of 2 × 2 matrices whose entries are real numbers.

4. Q[X] = {akX
k + ak−1X

k−1 + . . .a1X + a0 : ai ∈ Q, k ∈ Z, k � 0} - the set of polynomials in X
with coefficients in Q.

5. C(R) - the set of continuous functions from R to R (where R is the set of real numbers).
Addition is defined by

( f+ g� �� �
addition in C(R)

)(x) = f(x) + g(x)� �� �
addition in R

,

for x ∈ R and a pair of functions f : R → R and g : R → R.
The multplication in this example is function composition, defined by

( f ◦ g����
multiplication in C(R)

)(x) = f(x)× g(x)� �� �
multiplicaton in R

,

for x ∈ R and functions f,g ∈ C(R).

6. Z/6Z = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄, 6̄} - the set of congruence classes of integers modulo 6.
Multiplication and addition here are modulo 6.

7. C = {a+ bi : a,b ∈ R} - the complex numbers (where i2 = −1).

8. Let S be any set (for example S = {a,b, c,d, e}). Let P(S) be the power set of S - the set of all
subsets of S (if S has n elements, then P(S) has 2n elements). We can define “addtion” and
“multiplication” on P(S) as follows, for subsets A and B of S.

• we define the “sum” of A and B to be the symmetric difference of A and B. This is
denoted A�B and consists of those elements that belong either to A or to B but not
both. For example

{a,b,d, e}�{c,b,d} = {a, c, e}.
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• We define the “product” of A and B to be the intersection A ∩ B. For example

{a,b,d, e} ∩ {c,b,d} = {b,d}.

The rest of this lecture consists of some observations about these examples and properties of
their operations.

What do all the eight sets described above have in common as algebraic structures1? What disinguishes
them?

Each of them is equipped with two binary operations called addition and multiplication. This
is a similarity, even though the elements of the different sets don’t necessarily resemble each other.
Now we’ll look at how these operations behave in each case, and identify some resemblances and
some differences.

The Closure Property
All of the sets are closed under both the addition and multiplication operations. This means that
within any of our sets, if we choose a pair of (not necessarily different elements) and add or mul-
tiply them, the result is still in the set. This property is part of the meaning of the statement
that addition and multiplication are binary operations on the sets, but it is also worth noting ex-
plicitly because it arises a lot. An example of a set that is not closed under addition is the set
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} of the first 10 positive integers: we can add two elements of this set to-
gether, but their sum might not be in the set, for example 5 + 7 is not.

Identity Elements for Addition
In each of our examples, the set contains an identity element or neutral element for addition. This has
no effect when added to another element, like the number zero in any familiar number system:
adding zero to another number has no effect, it is the same as doing nothing. For this reason,
the identity element for addition in a ring is called the zero element, even if it is not actually the
number zero, it behaves in a similar way.
Exercise In each of our examples, what is the zero element? Check below for the answers. Think
about what you would need to write to explain any of these (one example of this is below).

1. The integer 0.

2. The rational number 0.

3. The zero matrix
�

0 0
0 0

�
.

4. The function f0 : R −→ R defined by f(x) = 0, ∀ x ∈ R.
To see this, let f be any element of C(R). For any x ∈ R,

(f+ f0)(x) = f(x) + f0(x) = f(x) + 0 = f(x).

So f + f0 = f (and also f0 + f = f). This is saying that adding f0 to f does not change f. This
is true for every f ∈ C(R), which means that f0 is an identity element for addition in C(R).

5. The zero polynomial 0.

6. The congruence class 0̄ modulo 6.

7. The complex number 0 (= 0 + 0i).

8. The empty set (think about this one!).

Identity Elements for Multiplication
Each of these examples contains an identity element for multiplication, i.e. an element e for which
e× a = a× e = a for all elements a of the set; multiplying by e has no effect. The multiplicative
identities are

1An algebraic structure is a non-empty set that is equipped with at least one binary operation, i.e. a means of combining
any pair of elements of the set to produce an element of the set, like addition, subtraction, multiplication etc
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1. The integer 1

2. The rational number 1

3. The matrix
�

1 0
0 1

�

4. The function f1 : R −→ R defined by f(x) = 1 for all x ∈ R
(Exercise: explain this one - remember that multiplication means function composition
here).

5. The polynomial 1

6. The congruence class 1̄ modulo 6

7. The complex number 1 (= 1 + 0i)

8. The full set S. (Why?)

The addition operation in our examples

• In all of our examples, addition is commutative, i.e. a + b = b + a for all pairs a and b of
elements. Check this.

• The addition operation is associative in all the examples. This means that (a + b) + c =
a + (b + c) for all elements a,b, c. In most cases this follows from the fact that addition of
integers and real numbers is associative. In the last example, it is not completely obvious
that the symmetric difference is an associative operation. To show this is an exercise. You
could start by showing that for three sets A,B,C, the set (A�B)�C consists of all of those
elements that belong either to exactly one of A,B,C or to the intersection of all three of them.

• In each of our sets, every element has an additive inverse or “negative”. Two elements are
additive inverses each other if their sum is the zero element. The fact that every element of
a set has an additive inverse means that subtraction can be defined in the set. Again, the
last example is probably the one where this is not so easy to see. Given a set S, what set T
has the property that S�T is the empty set?

The multiplication in our examples

• The multiplication operation is associative in all the examples.

• The multiplication is commutative in all of the examples except for M2(R) and C(R). Nei-
ther matrix multiplication nor function composition are commutative. For 2 × 2 matrices A
and B, the products AB and BA need not be equal. For a pair of functions f : R → R and
g : R → R, the compositions f ◦ g and g ◦ f are generally not the same.

• Two elements are multiplicative inverses of each other if their product is the multiplica-
tive identity element. In Q, every element except 0 has a multiplicative inverse, namely
its reciprocal. In C, every non-zero element has an inverse for multiplication. For a non-
zero complex number z = a + bi, its multiplicative inverse is 1

a2+b2 (a − bi). All the other
examples contain non-zero elements without multiplicative inverses (confirm this!).

The eight algebraic structures mentioned in this section are all examples of rings.
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