
Upper and Lower Bounds

Definition 46

Let S be a subset of R. An element b of R is an upper bound for S if
x ≤ b for all x ∈ S . An element a of R is a lower bound for S if a ≤ x
for all x ∈ S .

Recall that

S is bounded above if it has an upper bound,

S is bounded below if it has a lower bound,

S is bounded if it is bounded both above and below.

In this section we are mostly interested in sets that are bounded on at
least one side.
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Maximum and minimum elements

Definition 47

Let S be a subset of R. If there is a number m that is both an element
of S and an upper bound for S , then m is called the maximum element
of S and denoted max(S).
If there is a number l that is both an element of S and a lower bound for
S , then l is called the minimum element of S and denoted by min(S).

Notes
A set can have at most one maximum (or minimum) element.
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Maximum and minimum elements

Definition 47

Let S be a subset of R. If there is a number m that is both an element
of S and an upper bound for S , then m is called the maximum element
of S and denoted max(S).
If there is a number l that is both an element of S and a lower bound for
S , then l is called the minimum element of S and denoted by min(S).

Notes
Pictorially, on the number line, the maximum element of S is the
rightmost point that belongs to S , if such a point exists. The minimum
element of S is the leftmost point on the number line that belongs to S ,
if such a point exists.
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Not every set has a maximum element

There are basically two reasons why a subset S of R might fail to have a
maximum element. First, S might not be bounded above - then it
certainly won’t have a maximum element.

Secondly, S might be bounded above, but might not contain an element
that is an upper bound for itself. Take for example an open interval like
(0, 1). This set is certainly bounded above. However, take any element x
of (0, 1). Then x is a real number that is strictly greater than 0 and
strictly less than 1. Between s and 1 there are more real numbers all of
which belong to (0, 1) and are greater than x . So x cannot be an upper
bound for the interval (0, 1).
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Maximum and Minimum Elements

An open interval like (0, 1), although it is bounded, has no maximum
element and no minimum element.
An example of a subset of R that does have a maximum and a minimum
element is a closed interval like [2, 3]. The minimum element of [2, 3] is 2
and the maximum element is 3.

Remark : Every finite subset of R has a maximum element and a
minimum element.
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Supremum and Infimum

For bounded subsets of R, there are notions called the supremum and
infimum that are closely related to maximum and minimum. Every
subset of R that is bounded above has a supremum and every subset of
R that is bounded below has an infimum.

Definition 48 (The Axiom of Completeness for R)

Let S be a subset of R that is bounded above. Then the set of all upper
bounds for S has a minimum element. This number is called the
supremum of S and denoted sup(S).
Let S be a subset of R that is bounded below. Then the set of all lower
bounds for S has a maximum element. This number is called the
infimum of S and denoted inf(S).
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Supremum and Infimum

For bounded subsets of R, there are notions called the supremum and
infimum that are closely related to maximum and minimum. Every
subset of R that is bounded above has a supremum and every subset of
R that is bounded below has an infimum.

Definition 48 (The Axiom of Completeness for R)

Let S be a subset of R that is bounded above. Then the set of all upper
bounds for S has a minimum element. This number is called the
supremum of S and denoted sup(S).
Let S be a subset of R that is bounded below. Then the set of all lower
bounds for S has a maximum element. This number is called the
infimum of S and denoted inf(S).

Notes

1 The supremum of S is also called the least upper bound (lub) of S .

2 The infimum of S is also called the greatest lower bound (glb) of S .
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The Axiom of Completeness

The definition above is simultaneously a definition of the terms
supremum and infimum and a statement of the Axiom of Completeness
for the real numbers.

To see why this statement says something special about the real
numbers, temporarily imagine that the only number system available to
us is Q, the set of rational numbers. Look at the set

S := {x ∈ Q : x2 < 2}.
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S := {x ∈ Q : x2 < 2}

So S consists of all those rational numbers whose square is less than 2. It
is bounded above, for example by 2.
The positive elements of S are all those positive rational numbers that
are less than the real number

√
2.

Claim: S does not have a least upper bound in Q.
To see this, suppose that x is a rational number that is a candidate for
being the least upper bound of S in R.

If x2 < 2, then there is a gap in the number line between x and
√
2,

and in this gap are rational numbers that are greater than x but still
less than

√
2. So x is not an upper bound of S .

If x2 > 2, then there is a gap in the number line between
√
2 and x ,

and in this gap are rational numbers that are still upper bounds of S
but are less than x .
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S := {x ∈ Q : x2 < 2}

If we consider the same set S as a subset of R, we can see that
√
2 is the

supremum of S in R (and −
√
2) is the infimum of S in R.

This example demonstrates that the Axiom of Completeness does not
hold for Q, i.e. a bounded subset of Q need not have a supremum in Q
or an infimum in Q.
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A question from the 2014 exam . . .

Question 49

Let S =
�
2n+4
3n : n ∈ Z, n ≥ 1

�
.

1 List four elements of S.

2 Identify, with explanation, the maximum element of S.

3 Show that S has no minimum element, and determine the infimum
of S.
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Learning Outcomes for Section 2.5

After studying this section you should be able to

State what it means for a subset of R to be bounded (or bounded
above or bounded below).

Define the terms maximum, minimum, supremum and infimum and
explain the connections and differences between them.

State the Axiom of Completeness.

Determine whether a set presented like the one in the problem
above is bounded (above and/or below) or not and identify its
maximum/minimum/infimum/supremum as appropriate, with
explanation.
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Chapter 3: Sequences, series and convergence

Section 3.1: Introduction to sequences and series

Question 50

Does it make sense to talk about the “number”

∞�

n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+

1

25
+ ...?

Dr Rachel Quinlan MA180/MA186/MA190 Calculus Sequences and Convergence 173 / 218



Chapter 3: Sequences, series and convergence

Section 3.1: Introduction to sequences and series

Question 50

Does it make sense to talk about the “number”

∞�

n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+

1

25
+ ...?

1 + 1
4 = 1.25

π2

6
≈ 1.644934
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Chapter 3: Sequences, series and convergence

Section 3.1: Introduction to sequences and series

Question 50

Does it make sense to talk about the “number”

∞�

n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+

1

25
+ ...?

1 + 1
4 = 1.25

1 + 1
4 + 1

9 + 1
16 ≈ 1.423611

π2

6
≈ 1.644934
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Chapter 3: Sequences, series and convergence

Section 3.1: Introduction to sequences and series

Question 50

Does it make sense to talk about the “number”

∞�

n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+

1

25
+ ...?

1 + 1
4 = 1.25

1 + 1
4 + 1

9 + 1
16 ≈ 1.423611

1 + 1
4 + 1

9 + · · ·+ 1
(10)2

≈ 1.549767

π2

6
≈ 1.644934
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Chapter 3: Sequences, series and convergence

Section 3.1: Introduction to sequences and series

Question 50

Does it make sense to talk about the “number”

∞�

n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+

1

25
+ ...?

1 + 1
4 = 1.25

1 + 1
4 + 1

9 + 1
16 ≈ 1.423611

1 + 1
4 + 1

9 + · · ·+ 1
(10)2

≈ 1.549767

1 + 1
4 + 1

9 + · · ·+ 1
(200)2

≈ 1.639947

π2

6
≈ 1.644934
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Chapter 3: Sequences, series and convergence

Section 3.1: Introduction to sequences and series

Question 50

Does it make sense to talk about the “number”

∞�

n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+

1

25
+ ...?

1 + 1
4 = 1.25

1 + 1
4 + 1

9 + 1
16 ≈ 1.423611

1 + 1
4 + 1

9 + · · ·+ 1
(10)2

≈ 1.549767

1 + 1
4 + 1

9 + · · ·+ 1
(200)2

≈ 1.639947

1 + 1
4 + 1

9 + · · ·+ 1
(10000)2

≈ 1.644834

π2

6
≈ 1.644934
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Chapter 3: Sequences, series and convergence

Section 3.1: Introduction to sequences and series

Question 50

Does it make sense to talk about the “number”

∞�

n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+

1

25
+ ...?

1 + 1
4 = 1.25

1 + 1
4 + 1

9 + 1
16 ≈ 1.423611

1 + 1
4 + 1

9 + · · ·+ 1
(10)2

≈ 1.549767

1 + 1
4 + 1

9 + · · ·+ 1
(200)2

≈ 1.639947

1 + 1
4 + 1

9 + · · ·+ 1
(10000)2

≈ 1.644834

1 + 1
4 + 1

9 + · · ·+ 1
(100000)2

≈ 1.644924

π2

6
≈ 1.644934
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The series
�∞

n=1
1
n2

The series ∞�

n=1

1

n2

converges to the number
π2

6
(we will have precise definitions for the

highlighted terms a bit later).
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The series
�∞

n=1
1
n2

The series ∞�

n=1

1

n2

converges to the number
π2

6
(we will have precise definitions for the

highlighted terms a bit later).

This fact is remarkable - there is no obvious connection between π and
squares of the form 1

n2
; moreover all the terms in the series are rational

but π2

6 is certainly not.
This example gives us in principle a way of calculating the digits of π or
at least of π2. (In practice there are similar but better ways, as the
convergence in this example is very slow).
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Another Example

Example 51

What about ∞�

n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ ...?

Try experimenting with initial segments again :

1 +
1

2
+

1

3
+ · · ·+ 1

50
≈ 4.4992

There’s no sign of this “settling down” or converging to anything that we
can identify from this information. This doesn’t tell us anything of
course.
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Another Example

Example 51

What about ∞�

n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ ...?

Try experimenting with initial segments again :

1 +
1

2
+

1

3
+ · · ·+ 1

50
≈ 4.4992

1 +
1

2
+

1

3
+ · · ·+ 1

100
≈ 5.1874

There’s no sign of this “settling down” or converging to anything that we
can identify from this information. This doesn’t tell us anything of
course.
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Another Example

Example 51

What about ∞�

n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ ...?

Try experimenting with initial segments again :

1 +
1

2
+

1

3
+ · · ·+ 1

50
≈ 4.4992

1 +
1

2
+

1

3
+ · · ·+ 1

100
≈ 5.1874

1 +
1

2
+

1

3
+ · · ·+ 1

1000
≈ 7.4855

There’s no sign of this “settling down” or converging to anything that we
can identify from this information. This doesn’t tell us anything of
course.
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Another Example

Example 51

What about ∞�

n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ ...?

Try experimenting with initial segments again :

1 +
1

2
+

1

3
+ · · ·+ 1

50
≈ 4.4992

1 +
1

2
+

1

3
+ · · ·+ 1

100
≈ 5.1874

1 +
1

2
+

1

3
+ · · ·+ 1

1000
≈ 7.4855

1 +
1

2
+

1

3
+ · · ·+ 1

50000
≈ 11.3970

There’s no sign of this “settling down” or converging to anything that we
can identify from this information. This doesn’t tell us anything of
course.
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Another Example . . .

Example 52

What about ∞�

n=1

1

22n
=

1

4
+

1

16
+

1

64
+ ...?

Experimenting reveals
1
4 + 1

16 = 5
16

1
4 + 1

16 + 1
64 + 1

256 + 1
1024 = 341

1024 ≈ 0.33301
1
22

+ 1
24

+ 1
26

+ · · ·+ 1
214

≈ 0.3333

These calculations can be verified directly using properties of sums of
geometric progressions. It appears that this series is converging (quite
fast) to 1

3 .
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Another Example . . .

Example 53

What about ∞�

n=1

1

22n
=

1

4
+

1

16
+

1

64
+ ...?

The following picture gives some graphical evidence for this hypothesis.
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A last example

Example 54

Does it make sense to talk about

f (x) = x − x3

3!
+

x5

5!
− x7

7!
+ ...

as a function of x?

If it does, then f must have a domain (consisting of some or all of the
real numbers?) and substituting these values in to the definition in place
of x must somehow make sense.

x = 0 : f (0) = 0

In all cases we get (just from the first six terms) something very close to
sin x .
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A last example

Example 54

Does it make sense to talk about

f (x) = x − x3

3!
+

x5

5!
− x7

7!
+ ...

as a function of x?

If it does, then f must have a domain (consisting of some or all of the
real numbers?) and substituting these values in to the definition in place
of x must somehow make sense.

x = 0 : f (0) = 0

x = π
2 : f (π2 ) ≈ 0.9999 (six terms)

In all cases we get (just from the first six terms) something very close to
sin x .
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A last example

Example 54

Does it make sense to talk about

f (x) = x − x3

3!
+

x5

5!
− x7

7!
+ ...

as a function of x?

If it does, then f must have a domain (consisting of some or all of the
real numbers?) and substituting these values in to the definition in place
of x must somehow make sense.

x = 0 : f (0) = 0

x = π
2 : f (π2 ) ≈ 0.9999 (six terms)

x = π
6 : f (π6 ) ≈ 0.5000 (six terms)

In all cases we get (just from the first six terms) something very close to
sin x .
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A last example

Example 54

Does it make sense to talk about

f (x) = x − x3

3!
+

x5

5!
− x7

7!
+ ...

as a function of x?

If it does, then f must have a domain (consisting of some or all of the
real numbers?) and substituting these values in to the definition in place
of x must somehow make sense.

x = 0 : f (0) = 0

x = π
2 : f (π2 ) ≈ 0.9999 (six terms)

x = π
6 : f (π6 ) ≈ 0.5000 (six terms)

x = π
3 : f (π3 ) ≈ 0.8660 (six terms) (

√
3
2 ≈ 0.8660)

In all cases we get (just from the first six terms) something very close to
sin x .
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