1. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by $T(v)=A v$, where A is the matrix $\left[\begin{array}{rrr}1 & 2 & 1 \\ -2 & -2 & 3 \\ -1 & 0 & -2\end{array}\right]$.
What is the matrix of T with respect to the basis $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$?
2. Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by $\mathrm{T}(v)=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right] v$.

Show that there is no basis of \mathbb{R}^{2} with respect to which the matrix of T is diagonal.
3. Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by $\mathrm{T}(v)=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] v$.

Show that there is no basis of \mathbb{R}^{2} with respect to which the matrix of T is diagonal.
4. Find a matrix P for which $P^{-1} A P=\operatorname{diag}(1,-2,-10)$, where

$$
A=\left[\begin{array}{rrr}
-1 & 1 & 2 \\
2 & 0 & 4 \\
-4 & 2 & -10
\end{array}\right]
$$

(Note that you do not need to calculate the characteristic polynomial of A to answer this!)
5. Find the characteristic polynomial of the matrix $A=\left[\begin{array}{rrr}2 & -1 & 0 \\ 4 & 5 & -2 \\ 0 & -1 & 2\end{array}\right]$, and hence find the eigenvalues of A. Find an eigenvector corresponding to each eigenvalue, and determine whether A is diagonalizable.
6. Give an example of a 2×2 matrix whose entries are all non-zero integers and whose eigenvalues are 2 and 4 .
7. In \mathbb{R}^{2}, write $\left[\begin{array}{l}5 \\ 4\end{array}\right]$ as the sum of two vectors that are orthogonal to each other, one of which is parallel to $\left[\begin{array}{l}1 \\ 2\end{array}\right]$
8. In \mathbb{R}^{2}, find the point on the line $y=2 x$ that is nearest to the point $(4,5)$.
9. In \mathbb{R}^{3}, find $\operatorname{proj}_{v}(u)$, where $v=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ and $u=\left[\begin{array}{l}2 \\ 1 \\ 4\end{array}\right]$
10. In \mathbb{R}^{3}, find the orthogonal projection of the vector $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ on the plane $x+y+z=1$.

