MA203/MA283: LINEAR ALGEBRA Semester 2 2023-24 Practice Problem Sheet 3

- 1. Which of the following are subspaces of the vector space $M_2(\mathbb{R})$ consisting of all 2×2 matrices with real entries?
 - (a) The set of all invertible matrices.
 - (b) The set of all non-invertible matrices.
 - (c) The set consisting only of the zero matrix.
 - (d) The set $M_2(\mathbb{Q})$ of all matrices whose entries are rational.
 - (e) The set of all matrices whose entry in the (2, 1)-position is 0.
 - (f) The set of all matrices whose four entries sum to 0.
 - (g) The set of all matrices that have at least one entry equal to 0.
 - (h) The set of all symmetric matrices (A is symmetric if $A = A^{T}$).
- 2. Which of the following are spanning sets of $M_2(\mathbb{R})$?
 - (a) The set of all invertible matrices.
 - (b) The set of all non-invertible matrices.
 - (c) The set $M_2(\mathbb{Q})$ of all matrices whose entries are rational.
 - (d) The set of all matrices whose entry in the (2, 1)-position is 0.
 - (e) The set of all matrices whose entry in the (2, 1)-position is 1.
 - (f) The set of all matrices whose four entries sum to 0.
 - (g) The set of all matrices that have at least one entry equal to 0.
- 3. Determine whether or not each of the following is a spanning set of the set P_4 of all polynomials in $\mathbb{R}[x]$ of degree at most 3.
- (a) $\{x^3 + x^2, x^2 + x, x + 1\}$ (b) $\{x^3 + x^2 + x + 1, x^2 + x + 1, x + 1, 1\}$ (c) $\{x^3 + x^2 + x - 1, x^3 + x^2 - x + 1, x^3 - x^2 + x + 1, -x^3 + x^2 + x + 1\}$
 - (d) $\{x^3 + x^2 + x 1, x^3 + x^2 x + 1, x^3 x^2 + x + 1, x^3 + x^2\}$
- 4. What is the dimension of the space of all symmetric matrices in $M_3(\mathbb{R})$? (Recall that A is symmetric if $A^T = A$).

5. Let $v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ in \mathbb{R}^3 . What is the dimension of the space v^{\perp} defined by

$$\boldsymbol{\nu}^{\perp} = \{\boldsymbol{u} \in \mathbb{R}^3 : \boldsymbol{u}^{\mathsf{T}} \boldsymbol{\nu} = 0\}?$$

Find a basis of u^{\perp} .

6. Determine whether each of the following subsets of \mathbb{R}^3 is linearly independent.

(a)
$$\left\{ \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix} \right\}$$

(b)
$$\left\{ \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix} \right\}$$

7. Let S be a linearly independent subset of a vector space V, and suppose that v is an element of V with $v \notin \langle S \rangle$. Show that $S \cup \{v\}$ is a linearly independent subset of V.

8. Extend the set

$$\left\{ \begin{pmatrix} 1\\-2\\3 \end{pmatrix}, \begin{pmatrix} 0\\3\\-2 \end{pmatrix} \right\}$$

to a basis of \mathbb{R}^3 .

9. Show that
$$B = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$$
 is a basis of \mathbb{R}^3 .

10. Find the change of basis matrix from the standard basis to the basis B above, and use it to find the B-coordinates of $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ (where the elements of B are ordered as in Question 9 above).