1. Which of the following are subspaces of the vector space $M_{2}(\mathbb{R})$ consisting of all 2×2 matrices with real entries?
(a) The set of all invertible matrices.
(b) The set of all non-invertible matrices.
(c) The set consisting only of the zero matrix.
(d) The set $M_{2}(\mathbb{Q})$ of all matrices whose entries are rational.
(e) The set of all matrices whose entry in the $(2,1)$-position is 0 .
(f) The set of all matrices whose four entries sum to 0 .
(g) The set of all matrices that have at least one entry equal to 0 .
(h) The set of all symmetric matrices (A is symmetric if $A=A^{\top}$).
2. Which of the following are spanning sets of $M_{2}(\mathbb{R})$?
(a) The set of all invertible matrices.
(b) The set of all non-invertible matrices.
(c) The set $M_{2}(\mathbb{Q})$ of all matrices whose entries are rational.
(d) The set of all matrices whose entry in the $(2,1)$-position is 0 .
(e) The set of all matrices whose entry in the (2,1)-position is 1 .
(f) The set of all matrices whose four entries sum to 0 .
(g) The set of all matrices that have at least one entry equal to 0 .
3. Determine whether or not each of the following is a spanning set of the set P_{4} of all polynomials in $\mathbb{R}[x]$ of degree at most 3 .
(a) $\left\{x^{3}+x^{2}, x^{2}+x, x+1\right\}$
(b) $\left\{x^{3}+x^{2}+x+1, x^{2}+x+1, x+1,1\right\}$
(c) $\left\{x^{3}+x^{2}+x-1, x^{3}+x^{2}-x+1, x^{3}-x^{2}+x+1,-x^{3}+x^{2}+x+1\right\}$
(d) $\left\{x^{3}+x^{2}+x-1, x^{3}+x^{2}-x+1, x^{3}-x^{2}+x+1, x^{3}+x^{2}\right\}$
4. What is the dimension of the space of all symmetric matrices in $M_{3}(\mathbb{R})$?
(Recall that A is symmetric if $A^{\top}=A$).
5. Let $v=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ in \mathbb{R}^{3}. What is the dimension of the space v^{\perp} defined by

$$
v^{\perp}=\left\{u \in \mathbb{R}^{3}: u^{\top} v=0\right\} ?
$$

Find a basis of \mathfrak{u}^{\perp}.
6. Determine whether each of the following subsets of \mathbb{R}^{3} is linearly independent.
(a) $\left\{\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right),\left(\begin{array}{c}0 \\ 3 \\ -2\end{array}\right),\left(\begin{array}{c}1 \\ 4 \\ -1\end{array}\right)\right\}$
(b) $\left\{\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right),\left(\begin{array}{c}2 \\ 3 \\ -2\end{array}\right),\left(\begin{array}{c}1 \\ 4 \\ -1\end{array}\right)\right\}$
7. Let S be a linearly independent subset of a vector space V, and suppose that v is an element of V with $v \notin\langle S\rangle$. Show that $S \cup\{v\}$ is a linearly independent subset of V .
8. Extend the set

$$
\left\{\left(\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right),\left(\begin{array}{c}
0 \\
3 \\
-2
\end{array}\right)\right\}
$$

to a basis of \mathbb{R}^{3}.
9. Show that $\mathrm{B}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$ is a basis of \mathbb{R}^{3}.
10. Find the change of basis matrix from the standard basis to the basis B above, and use it to find the B-coordinates of $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ (where the elements of B are ordered as in Question 9 above).

