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Orthogonal projection on a subspace

From the Gram-Schmidt process, we have

Theorem

If V is a finite-dimensional inner product space, then V has an
orthogonal (or orthonormal) basis.

Now let W be a subspace of V , and let v ∈ V . The orthogonal
projection of v on W , denoted projW (v), is defined to be the unique
element u of W for which

v = u + v ′,

and v ′ ⊥ w for all w ∈W .

Example In R3, let W be the subspace x + y + 3z = 0, and let v =
 1

1
1

.

Then

v =

 1
1
1

 =

 6/11
6/11
−4/11


︸ ︷︷ ︸

projW (v)

+

 5/11
5/11

15/11


︸ ︷︷ ︸

⊥W
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How to calculate a projection from an orthogonal basis

That projW (v) exists follows from the fact that an orthogonal basis
{b1, ... , bk} of W may be extended to an orthogonal basis
B = {b1, ... , bk , ck+1, ... , cn} of W . Then v has a unique expression of
the form

v = a1b1 + · · ·+ akbk + ak+1ck+1 + · · ·+ ancn, for scalars ai ,

and projW (v) = a1b1 + · · ·+ akbk .
Moreover, taking inner products with bi gives 〈v , bi 〉 = ai 〈bi , bi 〉, so that

projW (v) =
k∑

i=1

〈v , bi 〉
〈bi , bi 〉

bi ,

where {b1, ... , bk} is an orthogonal basis of W .
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projW (v) is the nearest point of W to v

Let u = projW (v) and let w be any element of W .
Note that v − u is orthogonal to both w and u, hence to w − u. Then

d(v , w)2 = 〈v − w , v − w〉
= 〈(v − u) + (u − w), (v − u) + (u − w)〉
= 〈v − u, v − u〉+((((((((

2〈v − u, u − w〉+ 〈u − w , u − w〉
= 〈v − u, v − u〉+ 〈u − w , u − w〉
≥ d(v , u)2,

with equality only if w = u = projW (v).
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Calculating the projection on a subspace

Example In R3, find the unique point of the plane W : x + 2y − z = 0
that is nearest to the point v : (1, 2, 2).

Solution First find an orthogonal basis for W : for example {b1, b2},
where

b1 =

 1
0
1

 , b2 =

 1
−1
−1


Then

projW (v) = projb1(v) + projb2(v)

=
〈b1, v〉
〈b1, b1〉

b1 +
〈b2, v〉
〈b2, b2〉

b2

=
3

2
b1 −

3

3
b2

=

(
3

2
, 0,

3

2

)
− (1,−1,−1) =

(
1

2
, 1,

5

2

)
.
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Application: least squares for overdetermined systems

Example Consider the following overdetermined linear system.

2x + y = 3
x − y = 0
x − 3y = −4

2 1
1 −1
1 −3

[x
y

]
=

 3
0
−4


This system has three equations and only two variables. It is inconsistent
and overdetermined - each pair of equations has a simultaneous solution,
but all three do not.

Overdetermined systems arise quite often in applications, from observed
data. Even if they do not have exact solutions, approximate solutions are
of interest.
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The least squares method

For a vector b ∈ R3, the system2 1
1 −1
1 −3


︸ ︷︷ ︸

A

[
x
y

]
= b

has a solution if and only if b belongs to the 2-dimensional linear span W

of the columns of the coefficient matrix A: v1 =

2
1
1

 and v2 =

 1
−1
−3

.

If not, then the nearest element of W to B is b′ = projW (b), and our
approximate solutions for x and y are the entries of the vector c in R2

for which Ac = b′. We know that b′ − b is orthogonal to v1 and v2,
which are the rows of AT . Hence

AT (b′ − b) =

[
0
0

]
=⇒ ATb′ = ATAc = ATb =⇒ c = (ATA)−1ATb
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Example

In our example, 2 1
1 −1
1 −3

[x
y

]
=

 3
0
−4


A =

2 1
1 −1
1 −3

 , AT =

[
2 1 1
1 −1 −3

]
, ATA =

[
6 −2
−2 11

]
, ATb =

[
2

15

]
.

The least squares solution is given by

[
x
y

]
= c = (ATA)−1ATb =

1

62

[
11 2

2 6

] [
2

15

]
=

26
31

47
31

 .
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