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Orthogonality

Let V be a vector space with an inner product 〈·, ·〉 (such as the ordinary
scalar product).1

Definition We say that the vectors u and v are orthogonal (with respect
to 〈·, ·〉) if 〈u, v〉 = 0.

These definitions are consistent with “typical” geometrically motivated
concepts of distance and orthogonality.
Examples

1 (2, 5) and (5,−2) are orthogonal with respect to the ordinary scalar
product in R2.

2 sin πx and cos πx are orthogonal with respect to the scalar product
on the space of continuous functions on [0, 1] defined in Lecture 18;
this is saying that∫ 1

0
sin(πx) cos(πx) dx = 0

(
=

1

2π
sin2(πx)

∣∣∣∣1
0

)
.

1Recall that this means that 〈u, v〉 ∈ R for all u, v ∈ V (and the inner product 〈·, ·〉
satisfies the symmetry, bilinearity, and non-negativity conditions from Lecture 18).
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Orthogonal Projection

Lemma Let u and v be non-zero vectors in an inner product space V .
Then it is possible to write (in a unique way) v = au + v ′, where a is
scalar and v ′ is orthogonal to u.

If v is orthogonal to u, take a = 0 and v ′ = v .

If v is a scalar multiple of u, take au = v and v ′ = 0.

Otherwise, to solve for a and v ′ in the equation v = au + v ′ (with
u ⊥ v ′), take the inner product with u on both sides. Then

〈u, v〉 = a〈u, u〉+ 0 =⇒ a =
〈u, v〉
〈u, u〉

, v ′ = v − 〈u, v〉
〈u, u〉

u.

We can verify directly that the two components in this expression
are orthogonal to each other.

Example In R2, write u =
(2
1

)
and v =

( 6
−2
)
.
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Orthogonal projection of one vector on another

Definition

For non-zero vectors u and v in an inner product space V , the vector
〈u, v〉
〈u, u〉

u is called the projection of v on the 1-dimensional space spanned

by u. It is denoted by proju(v) and it has the property that v − proju(v)
is orthogonal to u.

Lemma

proju(v) is the unique nearest element of the line 〈u〉 to v .

Proof Let au be a scalar multiple of u. Then

d(au, v)2 = 〈au − v , au − v〉 = a2〈u, u〉 − 2a〈u, v〉+ 〈v , v〉

Regarded as a quadratic function of a, this has a minimum when its

derivative is 0, i.e. when 2a〈u, u〉 − 2〈u, v〉 = 0, when a =
〈u, v〉
〈u, u〉

.
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Orthogonal Bases (the Gram-Schmidt process)

Every finite-dimensional inner product space has an orthogonal basis2

To prove this, start with any basis {b1, ... , bn}, and adjust the elements
one by one (by subtracting off orthogonal projections of later vectors on
earlier ones). The process ends with an orthogonal basis {v1, ... , vn}.

1 Write v1 = b1, and v2 = b2 − projv1(b2) = b2 −
〈v1, b2〉
〈v1, v1〉

v1.

Then the pairs b1, b2 and v1, v2 span the same space, and v1 ⊥ v2.

2 Write v3 = b3 − projv1(b3)− projv2(b3).
Then the sets {v1, v2, v3} and {b1, b2, b3} span the same space, and
v3 ⊥ v1 and v3 ⊥ v2. To see this look at 〈v3, v1〉 and 〈v3, v2〉, noting
that

v3 = b3 −
〈b3, v1〉
〈v1, v1〉

v1 −
〈b3, v2〉
〈v2, v2〉

v2.

3 Continue: at the kth step, form vk by subtracting from bk its
projections on v1, ... , vn. This leave vk as the component of bk that
is orthogonal to all the previous vi .

2This means a basis whose elements are all orthogonal to each other.
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Orthogonal projection on a subspace

The result of this process is a basis {v1, ... , vn} whose elements satisfy

〈vi , vj〉 = 0 for i 6= j

We can adjust this basis to a orthonormal basis (consisting of orthogonal
unit vectors) by replacing each vi with its normalization v̂i .
From the Gram-Schmidt process, we have

Theorem

If V is a finite-dimensional inner product space, then V has an
orthogonal (or orthonormal) basis.

Now let W be a subspace of V , and let v ∈ V . The orthogonal
projection of v on W , denoted projW (v), is defined to be the unique
element u of W for which

v = u + v ′,

and v ′ ⊥ w for all w ∈W .
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