Lecture 19: Orthogonal Projection

March 19, 2024

1 [Orthogonality](#page-2-0)

2 [Orthogonal Projection](#page-3-0)

3 [Orthogonal and Orthonormal Bases](#page-5-0)

Orthogonality

Let V be a vector space with an inner product $\langle \cdot, \cdot \rangle$ (such as the ordinary scalar product). $¹$ </sup>

Definition We say that the vectors u and v are orthogonal (with respect to $\langle \cdot, \cdot \rangle$ if $\langle u, v \rangle = 0$.

These definitions are consistent with "typical" geometrically motivated concepts of distance and orthogonality.

Examples

- 1 (2, 5) and (5, -2) are orthogonal with respect to the ordinary scalar product in \mathbb{R}^2 .
- 2 sin πx and cos πx are orthogonal with respect to the scalar product on the space of continuous functions on [0, 1] defined in Lecture 18; this is saying that

$$
\int_0^1 \sin(\pi x) \cos(\pi x) dx = 0 \left(= \frac{1}{2\pi} \sin^2(\pi x) \Big|_0^1 \right).
$$

¹ Recall that this means that $\langle u, v \rangle \in \mathbb{R}$ for all $u, v \in V$ (and the inner product $\langle \cdot, \cdot \rangle$ satisfies the symmetry, bilinearity, and non-negativity conditions from Lecture 18). Rachel Quinlan and MA203/283 Lecture 18 3 / 7 3 / 7 3 / 7 3 / 7 3 / 7 3 / 7 3 / 7 3 / 7 3 / 7 3 / 7 3 / 7 3 / 7

Orthogonal Projection

Lemma Let u and v be non-zero vectors in an inner product space V . Then it is possible to write (in a unique way) $v = au + v'$, where a is scalar and v' is orthogonal to u .

- If v is orthogonal to u, take $a = 0$ and $v' = v$.
- If v is a scalar multiple of u, take $au = v$ and $v' = 0$.
- Otherwise, to solve for a and v' in the equation $v = au + v'$ (with $u \perp v'$), take the inner product with u on both sides. Then

$$
\langle u, v \rangle = a \langle u, u \rangle + 0 \Longrightarrow a = \frac{\langle u, v \rangle}{\langle u, u \rangle}, \quad v' = v - \frac{\langle u, v \rangle}{\langle u, u \rangle} u.
$$

We can verify directly that the two components in this expression are orthogonal to each other.

Example In
$$
\mathbb{R}^2
$$
, write $u = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $v = \begin{pmatrix} 6 \\ -2 \end{pmatrix}$.

Orthogonal projection of one vector on another

Definition

For non-zero vectors u and v in an inner product space V , the vector $\langle u, v \rangle$ $\frac{\partial u}{\partial u} u$ is called the projection of v on the 1-dimensional space spanned by u. It is denoted by $\text{proj}_{u}(v)$ and it has the property that $v - \text{proj}_{u}(v)$ is orthogonal to u.

Lemma

proj $_{u}(\mathsf{v})$ is the unique nearest element of the line $\langle u \rangle$ to $\mathsf{v}.$

Proof Let au be a scalar multiple of u. Then

$$
d(au, v)^2 = \langle au - v, au - v \rangle = a^2 \langle u, u \rangle - 2a \langle u, v \rangle + \langle v, v \rangle
$$

Regarded as a quadratic function of a, this has a minimum when its derivative is 0, i.e. when 2a $\langle u, u \rangle - 2\langle u, v \rangle = 0$, when $a = \frac{\langle u, v \rangle}{\langle v, v \rangle}$ $\frac{\langle u, v \rangle}{\langle u, u \rangle}$.

Orthogonal Bases (the Gram-Schmidt process)

Every finite-dimensional inner product space has an orthogonal basis²

To prove this, start with any basis $\{b_1, \ldots, b_n\}$, and adjust the elements one by one (by subtracting off orthogonal projections of later vectors on earlier ones). The process ends with an orthogonal basis $\{v_1, ..., v_n\}$.

■ Write $v_1 = b_1$, and $v_2 = b_2 - \text{proj}_{v_1}(b_2) = b_2 - \frac{\langle v_1, b_2 \rangle}{\langle v_1, v_2 \rangle}$ $\frac{\langle v_1, v_2 \rangle}{\langle v_1, v_1 \rangle} v_1$.

Then the pairs b_1 , b_2 and v_1 , v_2 span the same space, and $v_1 \perp v_2$.

2 Write $v_3 = b_3 - \text{proj}_{v_1}(b_3) - \text{proj}_{v_2}(b_3)$. Then the sets $\{v_1, v_2, v_3\}$ and $\{b_1, b_2, b_3\}$ span the same space, and $v_3 \perp v_1$ and $v_3 \perp v_2$. To see this look at $\langle v_3, v_1 \rangle$ and $\langle v_3, v_2 \rangle$, noting that

$$
v_3 = b_3 - \frac{\langle b_3, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \frac{\langle b_3, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2.
$$

3 Continue: at the kth step, form v_k by subtracting from b_k its projections on $v_1, ..., v_n$. This leave v_k as the component of b_k that is orthogonal to all the previous v_i .

 2 This means a basis whose elements are all orthogonal to each other.

Rachel Quinlan 6 / 7 MA203/283 Lecture 18 6 0 MA203 Machel Ouinlan 6 / 7

Orthogonal projection on a subspace

The result of this process is a basis $\{v_1, \ldots, v_n\}$ whose elements satisfy

 $\langle v_i, v_j \rangle = 0$ for $i \neq j$

We can adjust this basis to a orthonormal basis (consisting of orthogonal unit vectors) by replacing each v_i with its normalization \hat{v}_i . From the Gram-Schmidt process, we have

Theorem

If V is a finite-dimensional inner product space, then V has an orthogonal (or orthonormal) basis.

Now let W be a subspace of V, and let $v \in V$. The orthogonal projection of v on W, denoted proj $w(v)$, is defined to be the unique element u of W for which

$$
v=u+v',
$$

and $v' \perp w$ for all $w \in W$.