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Orthogonality

Let V be a vector space with an inner product (-, -) (such as the ordinary
scalar product).!
Definition We say that the vectors u and v are orthogonal (with respect
to (-, ) if (u,v) =0.
These definitions are consistent with “typical” geometrically motivated
concepts of distance and orthogonality.
Examples
(2,5) and (5, —2) are orthogonal with respect to the ordinary scalar
product in R2.
sin mx and cos wx are orthogonal with respect to the scalar product
on the space of continuous functions on [0, 1] defined in Lecture 18;

this is saying that
1
0) .

!Recall that this means that (u, v) € R for all u,v € V (and the inner product (-, -)
satisfies the symmetry, bilinearity, and non-negativity conditions from Lecture 18).
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Orthogonal Projection

Lemma Let v and v be non-zero vectors in an inner product space V.
Then it is possible to write (in a unique way) v = au + v/, where a is
scalar and v/ is orthogonal to w.

m If v is orthogonal to u, take a=0and v/ = v.
m If v is a scalar multiple of u, take au = v and v/ = 0.

m Otherwise, to solve for a and v/ in the equation v = au + v/ (with
u L V'), take the inner product with u on both sides. Then

(u,v)y=a(u,uy+0=a=

We can verify directly that the two components in this expression
are orthogonal to each other.

Example In R?, write u = (f) and v = (fz).
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Orthogonal projection of one vector on another

Definition

For non-zero vectors u and v in an inner product space V, the vector
(u, v)
(u, u)

by u. It is denoted by proj,(v) and it has the property that v — proj,(v)
is orthogonal to u.

u is called the projection of v on the 1-dimensional space spanned

Lemma

proj,(v) is the unique nearest element of the line (u) to v.
Proof Let au be a scalar multiple of u. Then
d(au, v)? = (au — v, au — v) = a*(u, u) — 2a(u, v) + (v, v)

Regarded as a quadratic function of a, this has a minimum when its

{u, v)
(u, u)
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derivative is 0, i.e. when 2a(u, u) —2(u, v) =0, when a =



Orthogonal Bases (the Gram-Schmidt process)

Every finite-dimensional inner product space has an orthogonal basis?

To prove this, start with any basis {b, ..., by}, and adjust the elements
one by one (by subtracting off orthogonal projections of later vectors on
earlier ones). The process ends with an orthogonal basis {v1, ..., v,}.
b
(v, b2) "
_ (v1,v1)
Then the pairs by, by and vi, v» span the same space, and v; L v».
Write v3 = bz — proj,,, (bs) — proj,, (bs).
Then the sets {vi, vo, v3} and {by, b, b3} span the same space, and
vz L vi and v3 L vo. To see this look at (v3, v1) and (vs, v2), noting

Write vi = by, and v» = by — projvl(bz) = by —

that
v3 = bz — (b5, v) v — (bs, v2) V2
(vi,v1) (v2, v2)
Continue: at the kth step, form v, by subtracting from by its
projections on vi, ..., V. This leave vy as the component of by that

is orthogonal to all the previous v;.
2This means a basis whose elements are all orthogonal to each other.
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Orthogonal projection on a subspace

The result of this process is a basis {vi, ..., v, } whose elements satisfy
(vi,vj) =0for i #j

We can adjust this basis to a orthonormal basis (consisting of orthogonal
unit vectors) by replacing each v; with its normalization V;.
From the Gram-Schmidt process, we have

Theorem

If V is a finite-dimensional inner product space, then V' has an
orthogonal (or orthonormal) basis.

Now let W be a subspace of V, and let v € V. The orthogonal
projection of v on W, denoted projy(v), is defined to be the unique
element u of W for which

V=u-+ v',

and v/ L wforall we W.
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