Lecture 16: Eigenvectors and Diagonalizability

March 8, 2024

1 Representing a linear transformation with respect to different bases

2 Diagonalizability

3 Non-diagonalizability

Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by $v \to Av$, where $A = \begin{bmatrix} -2 & 2 & 1 \\ -4 & -8 & -3 \end{bmatrix}$. The matrix of T with respect to the (ordered) basis Bof \mathbb{R}^3 with elements $b_1 = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}$, $b_2 = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$, $b_3 = \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix}$ is $\begin{bmatrix} 2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 7 \end{bmatrix}$. This means: $T(b_1) = 2b_1$, $T(b_2) = 3b_2$, $T(b_3) = 7b_3$, and for any

This means: $I(D_1) = 2D_1$, $I(D_2) = 3D_2$, $I(D_3) = ID_3$, and to $v \in \mathbb{R}^3$,

$$\underbrace{[\mathcal{T}(v)]_B}_{B-\text{coordinates of }\mathcal{T}(v)} = \underbrace{\mathcal{A}'[v]_B}_{\text{matrix-vector product}}$$

Let P be the matrix with the basis vectors from B as columns.

From Lecture 14, P^{-1} is the change of basis matrix from the standard basis to *B*. For any element *v* of \mathbb{R}^3 , its *B*-coordinates are given by the matrix-vector product

 $[v]_B = P^{-1}v.$

Equivalently, if we start with the B-coordinates, then the standard coordinates of v are given by

 $v = P[v]_B$.

So P itself is the change of basis matrix from B to the standard basis.

Similarity - the relation of A and A'

Starting with A, the matrix of $T : \mathbb{R}^3 \to \mathbb{R}^3$ with respect to the standard basis, how do we find A' the matrix of T with respect to B?

- **1** Take a vector v of \mathbb{R}^3 , written in *B*-coordinates as the column $[v]_B$.
- Convert to standard coordinates (so that we can apply T by multiplying by A): take the product P[v]_B.
- 3 Apply T: left-multiply by A to get $AP[v]_B$. This column has the standard coordinates of T(v).
- Convert to B-coordinates: left-multiply by P⁻¹, the change of basis matrix from standard to B. This gives P⁻¹AP[v]_B. This column has the B-coordinates of T(v).
- 5 Conclusion: For any element v of ℝ³, the B-coordinates of T(v) are given by (P⁻¹AP)[v]_B.

The *B*-matrix of *T* is $P^{-1}AP$, where *P* has the elements of *B* as columns.

Definition Two square matrices A and B are similar if $B = P^{-1}AP$ for an invertible matrix P.

Notes

- **1** Two distinct matrices are similar if and only if they represent the same linear transformation, with respect to different bases.
- 2 We can't tell by glancing at a pair of square matrices if they are similar or not, but there is one feature that is easy to check. The trace of a square matrix is the sum of the entries on the main diagonal, from top left to bottom right. If two matrices are similar, they have the same trace.
- 3 Similar matrices also have some other features in common, such as having the same determinant.
- 4 Our example showed that the 3×3 matrix $_{A} = \begin{bmatrix} -2 & 2 & 1 \\ 4 & 5 & -1 \\ -4 & -8 & 3 \end{bmatrix}$ is similar to the diagonal matrix diag(2, -3, 7). We say A is diagonalizable in this situation.

Rachel Quinlan

MA203/283 Lecture 16

Two equivalent interpretations of diagonalizability

- **1** From the diagonal form of A' we have $T(b_1) = 2b_1$, $T(b_2) = -3b_2$ and $T(b_3) = 7b_3$. This means that each of the basis elements b_1, b_2, b_3 is mapped by T to a scalar multiple of itself - each of them is an *eigenvector* of T.
- **2** We can rearrange the version $P^{-1}AP = A'$ to AP = PA'. Bearing in mind that $P = \begin{bmatrix} | & | & | \\ b_1 & b_2 & b_3 \\ | & | & | \end{bmatrix}$ and that A' = diag(2, -3, 7), this is

saying that

 $A\begin{bmatrix} | & | & | \\ b_1 & b_2 & b_3 \\ | & | & | \\ \end{bmatrix} = \begin{bmatrix} | & | & | \\ b_1 & b_2 & b_3 \\ | & | & | \\ \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 7 \\ \end{bmatrix} \Longrightarrow \begin{bmatrix} | & | & | \\ Ab_1 & Ab_2 & Ab_3 \\ | & | & | \\ \end{bmatrix} = \begin{bmatrix} | & | & | \\ 2b_1 & -3b_2 & 7b_3 \\ | & | & | \\ \end{bmatrix}$

This means that $Ab_1 = 2b_1$, $Ab_2 = -3b_2$ and $Ab_3 = 7b_3$, so that $B = \{b_1, b_2, b_3\}$ is a basis of \mathbb{R}^3 consisting of *eigenvectors* of A.

Definition An eigenvector of a square matrix A is a non-zero column vector v for which $Av = \lambda v$ for some scalar λ , called the eigenvalue of A to which v corresponds.

The eignvalues of A are the roots of its characteristic polynomial $det(\lambda I_n - A)$.

The eigenspace corresponding to a particular eigenvalue λ is the set of all vectors v satisfying $Av = \lambda v$. It is a subpsace of the relevant \mathbb{R}^n , of dimension at least 1.

The matrix $A \in M_n(\mathbb{R})$ is diagonalizable if and only if \mathbb{R}^n has a basis consisting of eigenvectors of A. In this case $P^{-1}AP$ is diagonal, where P is a matrix whose n columns are linearly independent eigenvectors of A. The diagonal entries of $P^{-1}AP$ are the corresponding eigenvalues.

For $A \in M_n(\mathbb{R})$, it does not always happen that \mathbb{R}^n has a basis consisting of eigenvectors of A.

Examples

1 The matrix
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 is diagonalizable in $M_2(\mathbb{C})$ but not in $M_2(\mathbb{R})$.
This matrix represents a clockwise rotation through 90° about the origin. It does not fix any line in \mathbb{R}^2 . Its characteristic polynomial is $\lambda^2 + 1$.

2 The matrix
$$B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 is not diagonalizable even over \mathbb{C} .
This matrix represents a horizontal shear. Its characteristic polynomial is $(\lambda - 1)^2$ but its 1-eigenspace consists only of the X-axis. It does not have two linearly independent eigenvectors.