Lecture 16: Eigenvectors and Diagonalizability

March 8, 2024

Lecture 16: Eigenvectors and Diagonalizability

1 Representing a linear transformation with respect to different bases

2 Diagonalizability

3 Non-diagonalizability

Example from Lecture 15

Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by $v \rightarrow A v$, where $A=\left[\begin{array}{rrr}-2 & 2 & 1 \\ 4 & 5 & -1 \\ -4 & -8 & 3\end{array}\right]$. The matrix of T with respect to the (ordered) basis B of \mathbb{R}^{3} with elements $b_{1}=\left[\begin{array}{l}1 \\ 0 \\ 4\end{array}\right], b_{2}=\left[\begin{array}{r}2 \\ -1 \\ 0\end{array}\right], b_{3}=\left[\begin{array}{r}0 \\ -1 \\ 2\end{array}\right]$, is

$$
\left[\begin{array}{rrr}
2 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 7
\end{array}\right]
$$

This means: $T\left(b_{1}\right)=2 b_{1}, T\left(b_{2}\right)=3 b_{2}, T\left(b_{3}\right)=7 b_{3}$, and for any $v \in \mathbb{R}^{3}$,

$$
\underbrace{[T(v)] B}_{B-\text { coordinates of } T(v)}=\underbrace{A^{\prime}[v] B}_{\text {matrix-vector product }}
$$

Change of basis again

Let P be the matrix with the basis vectors from B as columns.
From Lecture $14, P^{-1}$ is the change of basis matrix from the standard basis to B. For any element v of \mathbb{R}^{3}, its B-coordinates are given by the matrix-vector product

$$
[v]_{B}=P^{-1} v .
$$

Equivalently, if we start with the B-coordinates, then the standard coordinates of v are given by

$$
v=P[v]_{B} .
$$

So P itself is the change of basis matrix from B to the standard basis.

Similarity - the relation of A and A^{\prime}

Starting with A, the matrix of $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with respect to the standard basis, how do we find A^{\prime} the matrix of T with respect to B ?
1 Take a vector v of \mathbb{R}^{3}, written in B-coordinates as the column $[v]_{B}$.
2 Convert to standard coordinates (so that we can apply T by multiplying by A): take the product $P[v]_{B}$.
3 Apply T : left-multiply by A to get $A P[v]_{B}$. This column has the standard coordinates of $T(v)$.
4 Convert to B-coordinates: left-multiply by P^{-1}, the change of basis matrix from standard to B. This gives $P^{-1} A P[v]_{B}$. This column has the B-coordinates of $T(v)$.
5 Conclusion: For any element v of \mathbb{R}^{3}, the B-coordinates of $T(v)$ are given by $\left(P^{-1} A P\right)[v]_{B}$.

The B-matrix of T is $P^{-1} A P$, where P has the elements of B as columns.

Similar Matrices

Definition Two square matrices A and B are similar if $B=P^{-1} A P$ for an invertible matrix P.

Notes

1 Two distinct matrices are similar if and only if they represent the same linear transformation, with respect to different bases.
2 We can't tell by glancing at a pair of square matrices if they are similar or not, but there is one feature that is easy to check. The trace of a square matrix is the sum of the entries on the main diagonal, from top left to bottom right. If two matrices are similar, they have the same trace.
3 Similar matrices also have some other features in common, such as having the same determinant.
4 Our example showed that the 3×3 matrix $A=\left[\begin{array}{rrr}-2 & 2 & 1 \\ 4 & 5 & -1 \\ -4 & -8 & 3\end{array}\right]$ is similar to the diagonal matrix $\operatorname{diag}(2,-3,7)$. We say A is diagonalizable in this situation.

Two equivalent interpretations of diagonalizability

1 From the diagonal form of A^{\prime} we have $T\left(b_{1}\right)=2 b_{1}, T\left(b_{2}\right)=-3 b_{2}$ and $T\left(b_{3}\right)=7 b_{3}$. This means that each of the basis elements b_{1}, b_{2}, b_{3} is mapped by T to a scalar multiple of itself - each of them is an eigenvector of T.
2 We can rearrange the version $P^{-1} A P=A^{\prime}$ to $A P=P A^{\prime}$. Bearing in mind that $P=\left[\begin{array}{ccc}\mid & \mid & \mid \\ b_{1} & b_{2} & b_{3} \\ \mid & \mid & \mid\end{array}\right]$ and that $A^{\prime}=\operatorname{diag}(2,-3,7)$, this is saying that
$A\left[\begin{array}{ccc}\mid & \mid & \mid \\ b_{1} & b_{2} & b_{3} \\ \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{ccc}1 & 1 & \mid \\ b_{1} & b_{2} & b_{3} \\ \mid & 1 & \mid\end{array}\right]\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 7\end{array}\right] \Longrightarrow\left[\begin{array}{ccc}1 & 1 & \mid \\ A b_{1} & A b_{2} & A b_{3} \\ \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{ccc}1 & \mid & \mid \\ 2 b_{1} & -3 b_{2} & 7 b_{3} \\ 1 & \mid & \mid\end{array}\right]$
This means that $A b_{1}=2 b_{1}, A b_{2}=-3 b_{2}$ and $A b_{3}=7 b_{3}$, so that $B=\left\{b_{1}, b_{2}, b_{3}\right\}$ is a basis of \mathbb{R}^{3} consisting of eigenvectors of A.

Eigenvectors and Diagonalizability

Definition An eigenvector of a square matrix A is a non-zero column vector v for which $A v=\lambda v$ for some scalar λ, called the eigenvalue of A to which v corresponds.

The eignvalues of A are the roots of its characteristic polynomial $\operatorname{det}\left(\lambda I_{n}-A\right)$.

The eigenspace corresponding to a particular eigenvalue λ is the set of all vectors v satsfying $A v=\lambda v$. It is a subpsace of the relevant \mathbb{R}^{n}, of dimension at least 1.

The matrix $A \in M_{n}(\mathbb{R})$ is diagonalizable if and only if \mathbb{R}^{n} has a basis consisting of eigenvectors of A. In this case $P^{-1} A P$ is diagonal, where P is a matrix whose n columns are linearly independent eigenvectors of A. The diagonal entries of $P^{-1} A P$ are the corresponding eigenvalues.

Non-diagonalizabilty (two examples)

For $A \in M_{n}(\mathbb{R})$, it does not always happen that \mathbb{R}^{n} has a basis consisting of eigenvectors of A.

Examples

1 The matrix $A=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$ is diagonalizable in $M_{2}(\mathbb{C})$ but not in $M_{2}(\mathbb{R})$.
This matrix represents a clockwise rotation through 90° about the origin. It does not fix any line in \mathbb{R}^{2}. Its characteristic polynomial is $\lambda^{2}+1$.
2 The matrix $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ is not diagonalizable even over \mathbb{C}. This matrix represents a horizontal shear. Its characteristic polynomial is $(\lambda-1)^{2}$ but its 1 -eigenspace consists only of the X-axis. It does not have two linearly independent eigenvectors.

