Lecture 15: Similarity

March 5, 2024

1 The Rank-Nullity Theorem

2 Similarity

3 Diagonalizability

The Rank-Nullity Theorem relates the dimensions of the kernel, image and domain of a linear transformation. The dimension of the image of a linear trasformation is called its *rank*, and the dimension of the kernel is called the *nullity*. The rank of T is equal to the rank of the matrix of T, since the image of T is the column space of this matrix.

Theorem (Rank-Nullity Theorem) Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, where V and W are finite-dimensional vector spaces over a field \mathbb{F} . Then

 $\dim(\ker T) + \operatorname{rank} T = n.$

Informally, the Rank-Nullity Theorem says that the full dimension of the domain must be accounted for in the combination of the kernel and the image.

Proof of the Rank-Nullity Theorem

 $T: \mathbb{R}^n \to \mathbb{R}^m$ a linear transformation. dim

$$\dim(\ker T) + \operatorname{rank} T = n.$$

- **1** Write k for dim(ker T) and let $\{b_1, ..., b_k\}$ be a basis of ker T.
- **2** Extend this to a basis $\{b_1, \ldots, b_k, c_{k+1} \ldots, c_n\}$ of \mathbb{R}^n .
- **3** Since T sends each b_i to 0, the image under T of every element of \mathbb{R}^n is a linear combination of $T(c_{k+1}), \ldots, T(c_n)$.
- Also {T(c_{k+1}), ..., T(c_n)} is a linearly independent subset of ℝ^m. To see this, suppose for some scalars a_{k+1},..., a_n that a_{k+1}T(c_{k+1}) + a_{k+2}T(c_{k+2}) + ··· + a_nT(c_n) = 0. Then

$$a_{k+1}c_{k+1}+\cdots+a_nc_n \in \ker T \Longrightarrow a_{k+1}c_{k+1}+\cdots+a_nc_n \in \langle b_1, \dots, b_k \rangle.$$

Since $\{b_1, \ldots, b_k, c_{k+1} \ldots, c_n\}$ is linearly independent in \mathbb{R}^n , this means that $a_{k+1}c_{k+1} + a_{k+2}c_{k+2} + \cdots + a_nc_n = 0$, and each $a_j = 0$.

5 It follows that $\{T(c_{k+1}), \dots, T(c_n)\}$ is a basis for the image of T, so this image has dimension n - k, as required.

Linear transformations and change of basis

Definition Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation, and let $B = \{b_1, \dots, b_n\}$ be a basis of \mathbb{R}^n . The matrix of T with respect to B is the $n \times n$ matrix that has the B-coordinates of $T(b_1), T(b_2), \dots, T(b_n)$ as its n columns. This matrix M satisfies

$$[T(v)]_B = M[v]_B$$
, for all $v \in \mathbb{R}^n$

Example Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by $v \to Av$, where

$$A = \begin{bmatrix} -2 & 2 & 1 \\ 4 & 5 & -1 \\ -4 & -8 & 3 \end{bmatrix}$$

Let *B* be the (ordered) basis of \mathbb{R}^3 with elements

$$b_1 = \begin{bmatrix} 1\\0\\4 \end{bmatrix}, b_2 = \begin{bmatrix} 2\\-1\\0 \end{bmatrix}, b_3 = \begin{bmatrix} 4\\0\\2 \end{bmatrix}.$$

What is the matrix A' of T with respect to B?

A diagonal representation

$$T(b_1) = \begin{bmatrix} -2 & 2 & 1 \\ 4 & 5 & -1 \\ -4 & -8 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 8 \end{bmatrix} = 2b_1 \Longrightarrow [T(b_1)]_B = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$$
$$T(b_2) = \begin{bmatrix} -2 & 2 & 1 \\ 4 & 5 & -1 \\ -4 & -8 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} -6 \\ 3 \\ 0 \end{bmatrix} = -3b_2 \Longrightarrow [T(b_2)]_B = \begin{bmatrix} 0 \\ -3 \\ 0 \end{bmatrix}$$
$$T(b_3) = \begin{bmatrix} -2 & 2 & 1 \\ 4 & 5 & -1 \\ -4 & -8 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ -7 \\ 14 \end{bmatrix} = 7b_3 \Longrightarrow [T(b_3)]_B = \begin{bmatrix} 0 \\ 0 \\ 7 \end{bmatrix}$$

The matrix A' of T with respect to B is diagonal. For describing this transformation T, B is a better basis than the standard one.

$$A' = \left[\begin{array}{rrr} 2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 7 \end{array} \right]$$

This means: for any $v \in \mathbb{R}^3$,

.

B-coordinates of T(v)

matrix-vector product

MA203/283 Lecture 15

Let P be the matrix with the basis vectors from B as columns.

From Lecture 14, P^{-1} is the change of basis matrix from the standard basis to *B*. For any element *v* of \mathbb{R}^3 , its *B*-coordinates are given by the matrix-vector product

 $[v]_B = P^{-1}v.$

Equivalently, if we start with the B-coordinates, then the standard coordinates of v are given by

 $v = P[v]_B$.

So P itself is the change of basis matrix from B to the standard basis.

Similarity - the relation of A and A'

Starting with A, the matrix of $T : \mathbb{R}^3 \to \mathbb{R}^3$ with respect to the standard basis, how do we find A' the matrix of T with respect to B?

- **1** Take a vector v of \mathbb{R}^3 , written in *B*-coordinates as the column $[v]_B$.
- Convert to standard coordinates (so that we can apply T by multiplying by A): take the product P[v]_B
- 3 Apply T: left-multiply by A to get $AP[v]_B$. This column has the standard coordinates of T(v).
- Convert to B-coordinates: left-multiply by P⁻¹, the change of basis matrix from standard to B. This gives P⁻¹AP[v]_B. This column has the B-coordinates of T(v).
- 5 Conclusion: For any element v of ℝ³, the B-coordinates of T(v) are given by (P⁻¹AP)[v]_B.

The *B*-matrix of *T* is $P^{-1}AP$, where *P* has the elements of *B* as columns.

Definition Two square matrices A and B are similar if $B = P^{-1}AP$ for an invertible matrix P.

Notes

- **1** Two distinct matrices are similar if and only if they represent the same linear transformation, with respect to different bases.
- 2 We can't tell by glancing at a pair of square matrices if they are similar or not, but there is one feature that is easy to check. The trace of a square matrix is the sum of the entries on the main diagonal, from top left to bottom right. If two matrices are similar, they have the same trace.
- 3 Similar matrices also have some other features in common, such as having the same determinant (more on that later).
- 4 Our example showed that the 3×3 matrix $_{A} = \begin{bmatrix} -2 & 2 & 1 \\ 4 & 5 & -1 \\ -4 & -8 & 3 \end{bmatrix}$ is similar to the diagonal matrix diag(2, -3, 7). We say A is diagonalizable in this situation.

Rachel Quinlan

MA203/283 Lecture 15

Two equivalent interpretations of diagonalizability

- **1** From the diagonal form of A' we have $T(b_1) = 2b_1$, $T(b_2) = -3b_2$ and $T(b_3) = 7b_3$. This means that each of the basis elements b_1, b_2, b_3 is mapped by T to a scalar multiple of itself - each of them is an *eigenvector* of T.
- **2** We can rearrange the version $P^{-1}AP = A'$ to AP = PA'. Bearing in mind that $P = \begin{bmatrix} | & | & | \\ b_1 & b_2 & b_3 \\ | & | & | \end{bmatrix}$ and that A' = diag(2, -3, 7), this is

saying that

 $A\begin{bmatrix} | & | & | \\ b_1 & b_2 & b_3 \\ | & | & | \\ \end{bmatrix} = \begin{bmatrix} | & | & | \\ b_1 & b_2 & b_3 \\ | & | & | \\ \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 7 \\ \end{bmatrix} \Longrightarrow \begin{bmatrix} | & | & | \\ Ab_1 & Ab_2 & Ab_3 \\ | & | & | \\ \end{bmatrix} = \begin{bmatrix} | & | & | \\ 2b_1 & -3b_2 & 7b_3 \\ | & | & | \\ \end{bmatrix}$

This means that $Ab_1 = 2b_1$, $Ab_2 = -3b_2$ and $Ab_3 = 7b_3$, so that $B = \{b_1, b_2, b_3\}$ is a basis of \mathbb{R}^3 consisting of *eigenvectors* of A.