Lecture 15: Similarity

March 5, 2024

Lecture 15: Similarity

1. The Rank-Nullity Theorem

2 Similarity

3 Diagonalizability

The Rank-Nullity Theorem

The Rank-Nullity Theorem relates the dimensions of the kernel, image and domain of a linear transformation. The dimension of the image of a linear trasformation is called its rank, and the dimension of the kernel is called the nullity. The rank of T is equal to the rank of the matrix of T, since the image of T is the column space of this matrix.

Theorem (Rank-Nullity Theorem) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, where V and W are finite-dimensional vector spaces over a field \mathbb{F}. Then

$$
\operatorname{dim}(\operatorname{ker} T)+\operatorname{rank} T=n
$$

Informally, the Rank-Nullity Theorem says that the full dimension of the domain must be accounted for in the combination of the kernel and the image.

Proof of the Rank-Nullity Theorem

$T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ a linear transformation. $\operatorname{dim}(\operatorname{ker} T)+\operatorname{rank} T=n$.
1 Write k for $\operatorname{dim}(\operatorname{ker} T)$ and let $\left\{b_{1}, \ldots, b_{k}\right\}$ be a basis of $\operatorname{ker} T$.
2 Extend this to a basis $\left\{b_{1}, \ldots, b_{k}, c_{k+1} \ldots, c_{n}\right\}$ of \mathbb{R}^{n}.
3 Since T sends each b_{i} to 0 , the image under T of every element of \mathbb{R}^{n} is a linear combination of $T\left(c_{k+1}\right), \ldots, T\left(c_{n}\right)$.
4 Also $\left\{T\left(c_{k+1}\right), \ldots, T\left(c_{n}\right)\right\}$ is a linearly independent subset of \mathbb{R}^{m}. To see this, suppose for some scalars a_{k+1}, \ldots, a_{n} that $a_{k+1} T\left(c_{k+1}\right)+a_{k+2} T\left(c_{k+2}\right)+\cdots+a_{n} T\left(c_{n}\right)=0$. Then $a_{k+1} c_{k+1}+\cdots+a_{n} c_{n} \in \operatorname{ker} T \Longrightarrow a_{k+1} c_{k+1}+\cdots+a_{n} c_{n} \in\left\langle b_{1}, \ldots, b_{k}\right\rangle$.

Since $\left\{b_{1}, \ldots, b_{k}, c_{k+1} \ldots, c_{n}\right\}$ is linearly independent in \mathbb{R}^{n}, this means that $a_{k+1} c_{k+1}+a_{k+2} c_{k+2}+\cdots+a_{n} c_{n}=0$, and each $a_{j}=0$.
5 It follows that $\left\{T\left(c_{k+1}\right), \ldots, T\left(c_{n}\right)\right\}$ is a basis for the image of T, so this image has dimension $n-k$, as required.

Linear transformations and change of basis

Definition Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation, and let $B=\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis of \mathbb{R}^{n}. The matrix of T with respect to B is the $n \times n$ matrix that has the B-coordinates of $T\left(b_{1}\right), T\left(b_{2}\right), \ldots, T\left(b_{n}\right)$ as its n columns. This matrix M satisfies

$$
[T(v)]_{B}=M[v]_{B}, \text { for all } v \in \mathbb{R}^{n}
$$

Example Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by $v \rightarrow A v$, where

$$
A=\left[\begin{array}{rrr}
-2 & 2 & 1 \\
4 & 5 & -1 \\
-4 & -8 & 3
\end{array}\right]
$$

Let B be the (ordered) basis of \mathbb{R}^{3} with elements

$$
b_{1}=\left[\begin{array}{l}
1 \\
0 \\
4
\end{array}\right], b_{2}=\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], b_{3}=\left[\begin{array}{l}
4 \\
0 \\
2
\end{array}\right]
$$

What is the matrix A^{\prime} of T with respect to B ?

A diagonal representation

$$
\begin{aligned}
& T\left(b_{1}\right)=\left[\begin{array}{rrr}
-2 & 2 & 1 \\
4 & 5 & -1 \\
-4 & -8 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
4
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
8
\end{array}\right]=2 b_{1} \Longrightarrow\left[T\left(b_{1}\right)\right]_{B}=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right] \\
& T\left(b_{2}\right)=\left[\begin{array}{rrr}
-2 & 2 & 1 \\
4 & 5 & -1 \\
-4 & -8 & 3
\end{array}\right]\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{r}
-6 \\
3 \\
0
\end{array}\right]=-3 b_{2} \Longrightarrow\left[T\left(b_{2}\right)\right]_{B}=\left[\begin{array}{r}
0 \\
-3 \\
0
\end{array}\right] \\
& T\left(b_{3}\right)=\left[\begin{array}{rrr}
-2 & 2 & 1 \\
4 & 5 & -1 \\
-4 & -8 & 3
\end{array}\right]\left[\begin{array}{r}
0 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{r}
0 \\
-7 \\
14
\end{array}\right]=7 b_{3} \Longrightarrow\left[T\left(b_{3}\right)\right]_{B}=\left[\begin{array}{l}
0 \\
0 \\
7
\end{array}\right]
\end{aligned}
$$

The matrix A^{\prime} of T with respect to B is diagonal. For describing this transformation T, B is a better basis than the standard one.

$$
A^{\prime}=\left[\begin{array}{rrr}
2 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 7
\end{array}\right]
$$

This means: for any $v \in \mathbb{R}^{3}$,

Change of basis again

Let P be the matrix with the basis vectors from B as columns.
From Lecture $14, P^{-1}$ is the change of basis matrix from the standard basis to B. For any element v of \mathbb{R}^{3}, its B-coordinates are given by the matrix-vector product

$$
[v]_{B}=P^{-1} v .
$$

Equivalently, if we start with the B-coordinates, then the standard coordinates of v are given by

$$
v=P[v]_{B} .
$$

So P itself is the change of basis matrix from B to the standard basis.

Similarity - the relation of A and A^{\prime}

Starting with A, the matrix of $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with respect to the standard basis, how do we find A^{\prime} the matrix of T with respect to B ?
1 Take a vector v of \mathbb{R}^{3}, written in B-coordinates as the column $[v]_{B}$.
2 Convert to standard coordinates (so that we can apply T by multiplying by A): take the product $P[v]_{B}$
3 Apply T : left-multiply by A to get $A P[v]_{B}$. This column has the standard coordinates of $T(v)$.
4 Convert to B-coordinates: left-multiply by P^{-1}, the change of basis matrix from standard to B. This gives $P^{-1} A P[v]_{B}$. This column has the B-coordinates of $T(v)$.
5 Conclusion: For any element v of \mathbb{R}^{3}, the B-coordinates of $T(v)$ are given by $\left(P^{-1} A P\right)[v]_{B}$.

The B-matrix of T is $P^{-1} A P$, where P has the elements of B as columns.

Similar Matrices

Definition Two square matrices A and B are similar if $B=P^{-1} A P$ for an invertible matrix P.

Notes

1 Two distinct matrices are similar if and only if they represent the same linear transformation, with respect to different bases.
2 We can't tell by glancing at a pair of square matrices if they are similar or not, but there is one feature that is easy to check. The trace of a square matrix is the sum of the entries on the main diagonal, from top left to bottom right. If two matrices are similar, they have the same trace.
3 Similar matrices also have some other features in common, such as having the same determinant (more on that later).
4 Our example showed that the 3×3 matrix $A=\left[\begin{array}{rrr}-2 & 2 & 1 \\ 4 & 5 & -1 \\ -4 & -8 & 3\end{array}\right]$ is similar to the diagonal matrix $\operatorname{diag}(2,-3,7)$. We say A is diagonalizable in this situation.

Two equivalent interpretations of diagonalizability

1 From the diagonal form of A^{\prime} we have $T\left(b_{1}\right)=2 b_{1}, T\left(b_{2}\right)=-3 b_{2}$ and $T\left(b_{3}\right)=7 b_{3}$. This means that each of the basis elements b_{1}, b_{2}, b_{3} is mapped by T to a scalar multiple of itself - each of them is an eigenvector of T.
2 We can rearrange the version $P^{-1} A P=A^{\prime}$ to $A P=P A^{\prime}$. Bearing in mind that $P=\left[\begin{array}{ccc}\mid & \mid & \mid \\ b_{1} & b_{2} & b_{3} \\ \mid & \mid & \mid\end{array}\right]$ and that $A^{\prime}=\operatorname{diag}(2,-3,7)$, this is saying that
$A\left[\begin{array}{ccc}\mid & \mid & \mid \\ b_{1} & b_{2} & b_{3} \\ \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{ccc}1 & 1 & \mid \\ b_{1} & b_{2} & b_{3} \\ \mid & 1 & \mid\end{array}\right]\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 7\end{array}\right] \Longrightarrow\left[\begin{array}{ccc}1 & 1 & \mid \\ A b_{1} & A b_{2} & A b_{3} \\ \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{ccc}1 & \mid & \mid \\ 2 b_{1} & -3 b_{2} & 7 b_{3} \\ 1 & \mid & \mid\end{array}\right]$
This means that $A b_{1}=2 b_{1}, A b_{2}=-3 b_{2}$ and $A b_{3}=7 b_{3}$, so that $B=\left\{b_{1}, b_{2}, b_{3}\right\}$ is a basis of \mathbb{R}^{3} consisting of eigenvectors of A.

