Lecture 13: Bases and Dimension

March 1, 2024

Lecture 13: Bases ${ }^{1}$ and Dimension

1 Key definitions

2 The replacement theorem and some consequences

3 The number of elements in a basis

[^0]
Some definitions to recall

Let V be a vector space (e.g. $V=\mathbb{R}^{n}$). Let S be a (finite) subset of V.
$1 S$ is a spanning set of V (or S spans V) if every element of V is a linear combination of the elements of S.
2 The span of S, denoted $\langle S\rangle$, is the set of all linear combinations of element of S, a subspace of V.
$3 S$ is linearly independent if no element of S is a linear combination of the other elements of S.
Equivalently, if no proper subset of S spans $\langle S\rangle$.
$4 S$ is a basis of V if S is linearly independent AND S spans V.
A basis is a minimal spanning set.
A basis is a maximal linearly independent set.
5 Every finite spanning set of V contains a basis of V.
6 Every linearly independent subset of V can be extended to a basis of V (we have not proved this yet!).

The Steinitz Replacement Lemma

Theorem Let V be a vector space that has a basis with n elements. Then every linearly independent set with n elements is a basis of V.
Proof (for $n=3$). Suppose $B=\left\{b_{1}, b_{2}, b_{3}\right\}$ is a basis of V, and let $\left\{y_{1}, y_{2}, y_{3}\right\}$ be a linearly independent subset of V.
$1 y_{1}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$ for scalars a_{1}, a_{2}, a_{3}, not all zero. We can assume (after maybe relabelling the b_{i}), that $a_{1} \neq 0$.
Then $b_{1}=a_{1}^{-1} y_{1}-a_{1}^{-1} a_{2} b_{2}-a_{1}^{-1} a_{3} b_{3}$
So $b_{1} \in\left\langle y_{1}, b_{2}, b_{3}\right\rangle$ and $\left\{y_{1}, b_{2}, b_{3}\right\}$ spans V.
2 Now $y_{2} \in\left\langle y_{1}, b_{2}, b_{3}\right\rangle$ and y_{2} is not a scalar multiple of y_{1} (because $\left\{y_{1}, y_{2}, y_{3}\right\}$ is linearly independent).
So b_{2} (or b_{3}) has non-zero coefficient in any description of y_{2} as a linear combination of y_{1}, b_{2}, b_{3}.
Replace again: $\left\{y_{1}, y_{2}, b_{2}\right\}$ spans V.
3 Same reasoning: we can replace b_{2} with y_{3} to conclude $\left\{y_{1}, y_{2}, y_{3}\right\}$ spans V.
Conclusion $\left\{y_{1}, y_{2}, y_{3}\right\}$ is a basis of V.

Consequences of the replacement lemma

Theorem Let V be a vector space that has a basis with n elements. Then every linearly independent set with n elements is a basis of V.

1 If V has a spanning set with n elements, a linearly independent set in V cannot have more that n elements (by the same substitution argument).
2 If V has a linearly independent set with n elements, then a spanning set in V must have at least n elements (this is the same statement from the alternative viewpoint).

The number of elements in a linearly independent set cannot exceed the number in a spanning set. Every spanning set has at least as many elements as the biggest independent set.

Every basis has the same number of elements

Let V be a (finite dimensional) vector space, and let B and B^{\prime} be bases of V. Then

■ B is linearly independent and B^{\prime} is a spanning set, so B has at most as many elements as B^{\prime}.
■ B is a spanning set and B^{\prime} is linearly independent, so B has at least as many elements as $B^{\prime} /$
It follows that B and B^{\prime} have the same number of elements.
The dimension of V is the number of elements in a basis of V.
Exercise If $\operatorname{dim} V=n$, then every linearly independent subset of V has at most n elements, and every spanning set in V has at least n elements. Every spanning set with exactly n elements is a basis, and every linearly independent set with exactly n elements is a basis.

Note Every vector space that has a finite spanning set has a finite basis (since we can discard elements from a finite spanning set until a basis remains).

Examples

$1\left\{1, x, x^{2}, x^{3}\right\}$ is a basis for the vector space P_{3} of all polynomials of degree at most 3 with real coefficients. It is linearly independent because the only way to write the zero polynomial in the form $a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ is by taking $a_{0}=a_{1}=a_{2}=a_{3}=0$. Another basis of P_{3}, preferable for some applications, consists of the first four Legendre polynomials: $1, x, \frac{1}{2}\left(3 x^{2}-1\right), \frac{1}{2}\left(5 x^{3}-3 x\right)$.
2 The row space of a $m \times n$ matrix is the subspace of \mathbb{R}^{n} spanned by its rows. When we reduce the matrix to RREF, we are calculating a particular basis of its rowspace.
$3 \ln \mathbb{R}^{2}$, the reflection in the line $y=2 x$ sends $(1,0)$ to $\left(-\frac{3}{5}, \frac{4}{5}\right)$ and $(0,1)$ to $\left(\frac{4}{5}, \frac{3}{5}\right)$. Its (standard) matrix is $\left[\begin{array}{rr}-\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5}\end{array}\right]$. The same reflection sends $(1,2)$ to $(1,2)$ and $(2,-1)$ to $(-2,1)$. It is easier to describe it in terms of the basis $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{r}2 \\ -1\end{array}\right]\right\}$.

[^0]: 1 "Bases" is the plural of "basis"

