Lecture 9: Multiplication and linear transformations

February 8, 2024

Lecture 9: Matrix Algebra and Linear Transformations

1 Elementary row operations and factorization

2 Elementary Row Operations and matrix multiplication

3 Linear Transformations

4 Matrix multiplication is composition of functions

Gaussian elimination for inverse calculation

Example $A=\left[\begin{array}{rrrr}1 & -1 & 1 & 4 \\ 1 & 0 & 2 & 2 \\ 3 & -3 & 4 & 8 \\ 0 & -2 & -2 & 5\end{array}\right]$. Find A^{-1}.
$\left[\begin{array}{rrrr|rrrr}1 & -1 & 1 & 4 & 1 & 0 & 0 & 0 \\ 1 & 0 & 2 & 2 & 0 & 1 & 0 & 0 \\ 3 & -3 & 4 & 8 & 0 & 0 & 1 & 0 \\ 0 & -2 & -2 & 5 & 0 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{llll|rrrr}1 & 0 & 0 & 0 & 26 & -19 & -2 & -10 \\ 0 & 1 & 0 & 0 & 6 & -3 & -1 & -2 \\ 0 & 0 & 1 & 0 & -11 & 8 & 1 & 4 \\ 0 & 0 & 0 & 1 & -2 & 2 & 0 & 1\end{array}\right]$

Conclusion $A^{-1}=\left[\begin{array}{rrrr}26 & -19 & -2 & -10 \\ 6 & -3 & -1 & -2 \\ -11 & 8 & 1 & 4 \\ -2 & 2 & 0 & 1\end{array}\right]$. Check this!
If I_{n} is written in the first n columns of the RREF of $\left[A \mid I_{n}\right]$, the last n columns comprise A^{-1}.

Why did that work?

1 We were solving four linear systems simultaneously. All four had the same coefficient matrix A, their right hand sides were respectively $a e_{1}, e_{2}, e_{3}, e_{4}$.
2 The four leading 1's in the RREF mean that in each system (and any other with coefficient matrix A), there is a unique solution. Those unique solutions are respectively written in the last four columns. So Column 5 of the RREF is the unique column vector v with $A v=e_{1}$. This is the first column of A^{-1}.
3 If A didn't have an inverse, what would have happened?
If A has no inverse, at least one of the four systems is inconsistent. In the row reduction, we encounter a row with 0 in the first four positions, but not in all the last four.

Elementary row operations as multiplication by matrices

Let A be (for example) a 4×4 matrix. Applying an elementary row operation (ERO) to A means multiplying A on the left by another matrix.

ERO Type 1 Adding $4 \times$ ERO Type 2 Swapping Row 2 to Row 3 means Rows 2 and 4 means multiplying A on the multiplying A on the left by

$$
E_{1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 4 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad E_{2}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

ERO Type 3
Multiplying Row 3 by 5 means multiplying A on the left by

$$
E_{2}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 5 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

To see this, think about the effect of on the rows of A of left multiplication by E_{1}, E_{2}, E_{3}. Each of these E_{i} is an elementary matrix.

Gaussian elimination and factorization

When we apply Gaussian elimination to reduce a matrix A to RREF, we are identifying a sequence $E_{1}, E_{2}, \ldots, E_{k}$ with

$$
\operatorname{RREF}(A)=E_{k} \ldots E_{2} E_{1} A
$$

An $n \times n$ elementary matrix can differ from I_{n} in one of the following ways

- By having one non-zero entry away from the main diagonal.
- By having one non-zero entry on the main diagonal that is not 1 .
- By swapping the columns of two of the 1 s in I_{n}.

Exercise Show that the inverse of an elementary matrix is an elementary matrix.

With this in mind, we can rewrite the above equation as

$$
A=E_{1}^{-1} E_{2}^{-1} \ldots E_{k}^{-1} R R E F(A)
$$

Any matrix A can be factorized as $A=F B$, where F is a product of elementary matrices and B is a RREF. This factorization is very useful in numerical/computational mathematics.

Linear Transformations

Linear transformations are the primary functions between vector spaces that are of interest in linear algebra. They are special because they cooperate with the algebraic structure.

Definition Let m and n be positive integers. A linear tranformation T from \mathbb{R}^{n} to \mathbb{R}^{m} is a function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ that satisfies

■ $T(u+v)=T(u)+T(v)$, and

- $T(\lambda v)=\lambda T(v)$,
for all u and v in \mathbb{R}^{n}, and all scalars $\lambda \in \mathbb{R}$.

The Matrix of a Linear Transformation

Suppose that $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is a linear transformation, with

$$
T\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{r}
2 \\
-3
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right], T\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
-6 \\
7
\end{array}\right]
$$

Then for the vector in \mathbb{R}^{3} with any entries a, b, c
$T\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=a T\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+b T\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]+c T\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\underbrace{\left[\begin{array}{rrr}2 & 1 & -6 \\ -3 & 4 & 7\end{array}\right]}_{M_{T}}\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$.
and the 2×3 matrix M_{T} is called the (standard) matrix of A.

The matrix of a linear transformation

■ A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is represented by a $m \times n$ matrix M_{T}. The columns of M_{T} are the images under T of the standard basis vectors e_{1}, \ldots, e_{n}.
■ If v is any vector in \mathbb{R}^{n}, we can calculate $T(v)$ by multilpying the column vector v on the left by the matrix M_{T}. Matrix-vector multiplication is evaluating linear transformations.
■ On the other hand, if A is any $m \times n$ matrix, then A determines a linear transformation $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by $v \rightarrow A v$, for $v \in \mathbb{R}^{n}$. So, in a sense, matrices are linear transformations.

- Examples of linear transformations include rotations, reflections and scaling, but not translations.
■ If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then in order to evaluate T at any point/vector, we only need $m n$ pieces of information, just the m coordinates of each of the n images of the standard basis vectors. This is very different for example from continuous functions from \mathbb{R} to \mathbb{R} - we cannot know all about them just by knowing their values at a few points.

Matrix multplication is composition

Suppose that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ and $S: \mathbb{R}^{p} \rightarrow \mathbb{R}^{m}$ are linear transformations. Then $S \circ T(S$ after $T)$ is the linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} defined for $v \in \mathbb{R}^{n}$ by

$$
S \circ T(v)=S(T(v))
$$

Question How does the $(m \times n)$ matrix $M_{S \circ T}$ of $S \circ T$ depend on the $(m \times p)$ matrix M_{S} of S and the $(p \times n)$ matrix M_{T} of T ?
To answer this we have to think about the definition of $M_{S \circ T}$.
■ Its first column has the coordinates of $S \circ T\left(e_{1}\right)=S\left(T\left(e_{1}\right)\right)$.

- $T\left(e_{1}\right)$ is the first column of M_{T}.
- Then $S\left(T\left(e_{1}\right)\right)$ is the matrix-vector product $M_{S}[$ first column of M_{T}]. This is the first column of the matrix product $M_{S} M_{T}$.
■ Same for all the other columns: the conclusion is $M_{S \circ T}=M_{S} M_{T}$.
Matrix multiplication is composition of linear transformations.
Corollary Matrix multiplication is associative.

