Lecture 8: Gaussian Elimination and Matrix Multiplication

February 7, 2024

Lecture 8: Gaussian Elimination and Matrix Multplication

1. Features of matrix multiplication

2 The inverse of a matrix

3 Gaussian elimination and the inverse

Rows and Columns in a matrix product

For a $m \times p$ matrix A (m rows, p columns) and a $p \times n$ matrix B (p rows, n columns), the product $A B$ is a $m \times n$ matrix and it is defined by any of the following equivalent (but separately useful) descriptions.

■ For j from 1 to n, Column j of $A B$ is the linear combination of the columns of A whose coefficients are the entries of Column j of B.

- For i from 1 to m, Row i of $A B$ is the linear combination of the rows of B whose coefficients are the entries of Row i of A.
- For any position (i, j) in $A B$, the entry $(A B)_{i j}$ is the scalar product of the vectors given by Row i of A and Column j of B.

> Columns of $A B$ are linear combinations of columns of A. Rows of $A B$ are linear combinations of rows of B.

Note The description in terms of rows of B is one that we haven't seen until now.

The $n \times n$ identity matrix

For a positive integer n, the $n \times n$ identity matrix, denoted I_{n}, is the $n \times n$ matrix whose entries in the $(1,1),(2,2), \ldots,(n, n)$ positions (the positions on the main diagonal) are all 1, and whose entries in all other positions (all off-diagonal positions) are 0 . For example

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

What is special about I_{n} ? It is a identity element or neutral element for matrix multplication. Multiplying another matrix by it has no effect.

- If A is any matrix with n rows, then $I_{n} A=A$, and

■ If B is any matrix with n columns, then $B I_{n}=B$.

- In particular, if C is a $n \times n$ matrix, then $C I_{n}=I_{n} C=C$.

Exercise Confirm these properties using the definitions on the last slide.

The Inverse of a Matrix

Let A be a square matrix of size $n \times n$. If there exists a $n \times n$ matrix B for which $A B=I_{n}$ and $B A=I_{n}$, then A and B are called inverses (or multiplicative inverses) of each other. If it does not already have another name, the inverse of A is denoted A^{-1}.
Example The matrices $\left(\begin{array}{rr}3 & 2 \\ -5 & -4\end{array}\right)$ and $\left(\begin{array}{rr}2 & 1 \\ -\frac{5}{2} & -\frac{3}{2}\end{array}\right)$ are inverses of each other.

Not every square matrix has an inverse. For example the 2×2 matrix $\left(\begin{array}{rr}3 & 2 \\ -6 & -4\end{array}\right)$ does not.
Exercise Prove that a square matrix can only have one inverse. Exercise If $A B=I_{n}$ for square matrices A and B, prove that $B A=I_{n}$. Note For these exercises, assume (or show!) that ($P Q$) $R=P(R Q)$ for any matrices P, Q, R for which these products exist (we will prove this later - matrix multiplication is associative).

How to calculate the inverse of a matrix

Given a square matrix A, we want to find B so that $A B=I_{n}$. This means

- Column 1 of B is a solution to the linear system $A x=e_{1}$, where x is a vector whose entries are variables $\left(x_{1}, \ldots, x_{n}\right)$ and e_{1} is the column vector with entries $1,0, \ldots, 0$.
- Column 2 of B is a solution to the linear system $A x=e_{2}$ (where the column vector e_{2} has 1 in its second position and zeros elsewhere).
- ... and so on for Column 3 to Column n

So A has an inverse if and only if each of e_{1}, \ldots, e_{n} is a linear combination of the columns ${ }^{1}$ of A.

We can solve each of the n systems above using Gaussian elimination on its augmented matrix. Or we can solve all of them together by applying Gaussian elimination to the $n \times 2 n$ matrix $\left[A \mid I_{n}\right]$.

[^0]
Gaussian elimination for inverse calculation

Example $A=\left[\begin{array}{rrrr}1 & -1 & 1 & 4 \\ 1 & 0 & 2 & 2 \\ 3 & -3 & 4 & 8 \\ 0 & -2 & -2 & 5\end{array}\right]$. Find A^{-1}.
$\left[\begin{array}{rrrr|rrrr}1 & -1 & 1 & 4 & 1 & 0 & 0 & 0 \\ 1 & 0 & 2 & 2 & 0 & 1 & 0 & 0 \\ 3 & -3 & 4 & 8 & 0 & 0 & 1 & 0 \\ 0 & -2 & -2 & 5 & 0 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{llll|rrrr}1 & 0 & 0 & 0 & 26 & -19 & -2 & -10 \\ 0 & 1 & 0 & 0 & 6 & -3 & -1 & -2 \\ 0 & 0 & 1 & 0 & -11 & 8 & 1 & 4 \\ 0 & 0 & 0 & 1 & -2 & 2 & 0 & 1\end{array}\right]$

Conclusion $A^{-1}=\left[\begin{array}{rrrr}26 & -19 & -2 & -10 \\ 6 & -3 & -1 & -2 \\ -11 & 8 & 1 & 4 \\ -2 & 2 & 0 & 1\end{array}\right]$. Check this!
If I_{n} is written in the first n columns of the RREF of $\left[A \mid I_{n}\right]$, the last n columns comprise A^{-1}.

Why did that work?

1 We were solving four linear systems simultaneously. All four had the same coefficient matrix A, their right hand sides were respectively $a e_{1}, e_{2}, e_{3}, e_{4}$.
2 The four leading 1's in the RREF mean that in each system (and any other with coefficient matrix A), there is a unique solution. Those unique solutions are respectively written in the last four columns. So Column 5 of the RREF is the unique column vector v with $A v=e_{1}$. This is the first column of A^{-1}.
3 If A didn't have an inverse, what would have happened?
If A has no inverse, at least one of the four systems is inconsistent. In the row reduction, we encounter a row with 0 in the first four positions, but not in all the last four.

[^0]: ${ }^{1}$ If this happens, then the "row versions" of e_{1}, \ldots, e_{n} are all linear combinations of the rows of A too. Why?

