Lecture 12: Linear Independence, Bases and Dimension

February 22, 2024

Lecture 12: Linear Independence, Bases ${ }^{1}$ and Dimension

1 Finite dimensional spaces

2 Linearly Independent Sets

3 Bases

4 The replacement theorem

[^0]
Finite dimensional spaces

Definition A vector space V is finite dimensional if it contains a finite spanning set.

This means a set $\left\{v_{1}, \ldots, v_{k}\right\}$ of elements, with the property that every element of V is a linear combination of v_{1}, \ldots, v_{k}.

Examples

$1 \mathbb{R}^{n}$ is finite dimensional, with $\left\{e_{1}, \ldots, e_{n}\right\}$ as a spanning set with n elements.
$2 M_{m \times n}(\mathbb{R})$ is finite dimensional, with $\left\{E_{i j}\right\}_{1 \leq i \leq m, 1 \leq j \leq n}$ as a spanning set with $m n$ elements. The matrix $E_{i j}$ has 1 in position (i, j) and zero in all other positions.
3 An example of vector space that is not finite dimensional is $\mathbb{R}[x]$, the space of all polynomials with coefficients in \mathbb{R}. If S is any finite set of polynomials, then the degree of a linear combination of elements of S can't exceed the highest degree of a polynomial in S.

Questions about Spanning Sets

1 Does \mathbb{R}^{3} have a spanning set with fewer than three elements?
2 Does every spanning set of \mathbb{R}^{3} have exactly three elements? NO (why not?)
3 Does every spanning set of \mathbb{R}^{3} contain one with exactly three elements?
4 If V is a subspace of \mathbb{R}^{3}, does V have a spanning set with at most three elements?
5 If V is a proper subspace of \mathbb{R}^{3} (i.e. not all of \mathbb{R}^{3}) does V have a spanning set with fewer than three elements?
Note A pair of vectors in \mathbb{R}^{3} (if they are not scalar multiples of each other) span a plane. Adding a third vector (if it does not lie in this plane) gives a spanning set for all of \mathbb{R}^{3}.

Linear Dependence and Linear Independence

For a subset $\left\{v_{1}, \ldots, v_{k}\right\}$ of \mathbb{R}^{n}, suppose that v_{k} is a linear combination of v_{1}, \ldots, v_{k-1}. Then every linear combination of v_{1}, \ldots, v_{k} is "already" a linear combination of v_{1}, \ldots, v_{k-1} and

$$
\left\langle v_{1}, \ldots, v_{k}\right\rangle=\left\langle v_{1}, \ldots, v_{k-1}\right\rangle .
$$

If we are interested in the span of $\left\{v_{1}, \ldots, v_{k}\right\}$ we could throw away v_{k} and this would not change the span.

Definition A set of (at least two) vectors in \mathbb{R}^{n} is linearly dependent if one of its elements is a linear combination of the others.
A set of vectors in R^{n} is linearly independent if it is not linearly dependent. ${ }^{2}$

Linear independence means that throwing away any element results in shrinking the span.

[^1]
More on Linear Independence

Example from Lecture 2

The three equations of the system, or the three rows of the original augmented matrix, formed a linearly dependent set. One row was eliminated by adding a linear combination of the other two. All the information in the system was contained in just (any) two of the three equations.
Meaning of linear independence A set is linearly independent if none of its elements is a linear combination of the others.
This definition makes conceptual sense, but to use it as a test for linear independence would mean checking it separately for every element of the set - not so efficient. We have an alternative formulation for this purpose, which is logically equivalent but maybe a bit harder to read.

Test for linear independence

To decide if the set $\left\{v_{1}, \ldots, v_{k}\right\}$ is linearly independent, try to write the zero vector as a linear combination of the v_{i} :

$$
\sum_{i=1}^{k} a_{i} v_{i}=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{k} v_{k}=0
$$

for scalars a_{1}, \ldots, a_{k}. If $a_{i}=0$ for every i is the only solution, then v_{1}, \ldots, v_{k} are linearly independent. If there is another solution, they are linearly dependent.
Example Decide whether $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right] \cdot\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$ is a linearly independent subset of \mathbb{R}^{3}. Solution By row reduction we find

$$
\left[\begin{array}{rrr}
1 & 1 & 1 \\
0 & 0 & 1 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Longrightarrow a=b=c=0
$$

Conclusion The set is linearly independent.

What is a basis?

A basis of a vector space is a linearly independent spanning set.

- A basis is a minimal spanning set, one in which every element is needed, one that does not contain a smaller spanning set.
■ Example: $\left\{e_{1}, e_{2}, e_{3}\right\}$ is a basis of \mathbb{R}^{3}. In general $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of \mathbb{R}^{n}.
- $\{(1,3),(1,4)\}$ is a basis of \mathbb{R}^{2}.
- If S is a finite spanning set of a vector space V, then S contains a basis of V. If S is not linearly independent, then some $v \in S$ is a linear combination of the other elements of S. Throwing v away leaves a smaller set that still spans V. Repeat this step until a basis remains.

The Steinitz Replacement Lemma

Theorem Let V be a vector space that has a basis with n elements. Then every linearly independent set with n elements is a basis of V.

Proof (for $n=3$). Suppose $B=\left\{b_{1}, b_{2}, b_{3}\right\}$ is a basis of V, and let $\left\{y_{1}, y_{2}, y_{3}\right\}$ be a linearly independent subset of V.
$1 y_{1}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$ for scalars a_{1}, a_{2}, a_{3}, not all zero. We can assume (after maybe relabelling the b_{i}), that $a_{1} \neq 0$.
Then $b_{1}=a_{1}^{-1} y_{1}-a_{1}^{-1} a_{2} b_{2}-a_{1}^{-1} a_{3} b_{3}$
So $b_{1} \in\left\langle y_{1}, b_{2}, b_{3}\right\rangle$ and $\left\{y_{1}, b_{2}, b_{3}\right\}$ spans V.
2 Now $y_{2} \in\left\langle y_{1}, b_{2}, b_{3}\right\rangle$ and y_{2} is not a scalar multiple of y_{1} (because $\left\{y_{1}, y_{2}, y_{3}\right\}$ is linearly independent).
So b_{2} (or b_{3}) has non-zero coefficient in any description of y_{2} as a linear combination of y_{1}, b_{2}, b_{3}.
Replace again: $\left\{y_{1}, y_{2}, b_{2}\right\}$ spans V.
3 Same reasoning: we can replace b_{2} with y_{3} to conclude $\left\{y_{1}, y_{2}, y_{3}\right\}$ spans V.
Conclusion $\left\{y_{1}, y_{2}, y_{3}\right\}$ is a basis of V.

[^0]: 1 "Bases" is the plural of "basis"

[^1]: ${ }^{2}$ Small print: a set with just one vector is linearly independent, unless this vector is the zero vector. Any set that contains the zero vector is linearly dependent.

