Lecture 12: Linear Independence, Bases and Dimension

February 22, 2024

Lecture 12: Linear Independence, Bases¹ and Dimension

- 1 Finite dimensional spaces
- 2 Linearly Independent Sets
- 3 Bases
- 4 The replacement theorem

Rachel Quinlan MA203/283 Lecture 12 2

¹ "Bases" is the plural of "basis"

Finite dimensional spaces

Definition A vector space V is finite dimensional if it contains a finite spanning set.

This means a set $\{v_1, ..., v_k\}$ of elements, with the property that every element of V is a linear combination of $v_1, ..., v_k$.

Examples

- **I** \mathbb{R}^n is finite dimensional, with $\{e_1, \dots, e_n\}$ as a spanning set with n elements.
- **2** $M_{m \times n}(\mathbb{R})$ is finite dimensional, with $\{E_{ij}\}_{1 \le i \le m, \ 1 \le j \le n}$ as a spanning set with mn elements. The matrix E_{ij} has 1 in position (i,j) and zero in all other positions.
- 3 An example of vector space that is not finite dimensional is $\mathbb{R}[x]$, the space of all polynomials with coefficients in \mathbb{R} . If S is any finite set of polynomials, then the degree of a linear combination of elements of S can't exceed the highest degree of a polynomial in S.

Questions about Spanning Sets

- **1** Does \mathbb{R}^3 have a spanning set with fewer than three elements?
- 2 Does every spanning set of \mathbb{R}^3 have exactly three elements? NO (why not?)
- 3 Does every spanning set of \mathbb{R}^3 contain one with exactly three elements?
- If V is a subspace of \mathbb{R}^3 , does V have a spanning set with at most three elements?
- If V is a proper subspace of \mathbb{R}^3 (i.e. not all of \mathbb{R}^3) does V have a spanning set with fewer than three elements?

Note A pair of vectors in \mathbb{R}^3 (if they are not scalar multiples of each other) span a plane. Adding a third vector (if it does not lie in this plane) gives a spanning set for all of \mathbb{R}^3 .

Linear Dependence and Linear Independence

For a subset $\{v_1, \ldots, v_k\}$ of \mathbb{R}^n , suppose that v_k is a linear combination of v_1, \ldots, v_{k-1} . Then every linear combination of v_1, \ldots, v_k is "already" a linear combination of v_1, \ldots, v_{k-1} and

$$\langle v_1, \ldots, v_k \rangle = \langle v_1, \ldots, v_{k-1} \rangle.$$

If we are interested in the span of $\{v_1, ..., v_k\}$ we could throw away v_k and this would not change the span.

Definition A set of (at least two) vectors in \mathbb{R}^n is linearly dependent if one of its elements is a linear combination of the others.

A set of vectors in \mathbb{R}^n is linearly independent if it is not linearly dependent.²

Linear independence means that throwing away any element results in shrinking the span.

Rachel Quinlan MA203/283 Lecture 12 5 / 9

²Small print: a set with just one vector is linearly independent, unless this vector is the zero vector. Any set that contains the zero vector is linearly dependent.

More on Linear Independence

Example from Lecture 2

The three equations of the system, or the three rows of the original augmented matrix, formed a *linearly dependent set*. One row was eliminated by adding a linear combination of the other two. All the information in the system was contained in just (any) two of the three equations.

Meaning of linear independence A set is linearly independent if none of its elements is a linear combination of the others.

This definition makes conceptual sense, but to use it as a test for linear independence would mean checking it separately for every element of the set - not so efficient. We have an alternative formulation for this purpose, which is logically equivalent but maybe a bit harder to read.

Test for linear independence

To decide if the set $\{v_1, ..., v_k\}$ is linearly independent, try to write the zero vector as a linear combination of the v_i :

$$\sum_{i=1}^k a_i v_i = a_1 v_1 + a_2 v_2 + \dots + a_k v_k = 0,$$

for scalars a_1, \ldots, a_k . If $a_i = 0$ for every i is the only solution, then v_1, \ldots, v_k are linearly independent. If there is another solution, they are linearly dependent.

Example Decide whether $\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$ is a linearly independent

subset of \mathbb{R}^3 . Solution By row reduction we find

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Longrightarrow a = b = c = 0.$$

Conclusion The set is linearly independent.

Rachel Quinlan MA203/283 Lecture 12 7 / 9

A basis of a vector space is a linearly independent spanning set.

- A basis is a minimal spanning set, one in which every element is needed, one that does not contain a smaller spanning set.
- Example: $\{e_1, e_2, e_3\}$ is a basis of \mathbb{R}^3 . In general $\{e_1, \dots, e_n\}$ is a basis of \mathbb{R}^n .
- $\{(1,3),(1,4)\}$ is a basis of \mathbb{R}^2 .
- If S is a finite spanning set of a vector space V, then S contains a basis of V. If S is not linearly independent, then some $v \in S$ is a linear combination of the other elements of S. Throwing v away leaves a smaller set that still spans V. Repeat this step until a basis remains.

The Steinitz Replacement Lemma

Theorem Let V be a vector space that has a basis with n elements. Then every linearly independent set with n elements is a basis of V.

Proof (for n = 3). Suppose $B = \{b_1, b_2, b_3\}$ is a basis of V, and let $\{y_1, y_2, y_3\}$ be a linearly independent subset of V.

1 $y_1 = a_1b_1 + a_2b_2 + a_3b_3$ for scalars a_1, a_2, a_3 , not all zero. We can assume (after maybe relabelling the b_i), that $a_1 \neq 0$. Then $b_1 = a_1^{-1}y_1 - a_1^{-1}a_2b_2 - a_1^{-1}a_3b_3$

Then
$$b_1 = a_1^{-1}y_1 - a_1^{-1}a_2b_2 - a_1^{-1}a_3b_3$$
.
So $b_1 \in \langle y_1, b_2, b_3 \rangle$ and $\{y_1, b_2, b_3\}$ spans V .

- Now $y_2 \in \langle y_1, b_2, b_3 \rangle$ and y_2 is not a scalar multiple of y_1 (because $\{y_1, y_2, y_3\}$ is linearly independent). So b_2 (or b_3) has non-zero coefficient in any description of y_2 as a linear combination of y_1, b_2, b_3 .
 - Replace again: $\{y_1, y_2, b_2\}$ spans V.
- Same reasoning: we can replace b_2 with y_3 to conclude $\{y_1, y_2, y_3\}$ spans V.

Conclusion $\{y_1, y_2, y_3\}$ is a basis of V.