Lecture 11: Spanning sets and Linear Independence

February 19, 2024

Lecture 11: Spanning Sets and Linear Independence

- 2 Spanning sets
- 3 Spanning Sets
- 4 Linearly Independent Sets

Subspaces

Definition A (non-empty) subset V of \mathbb{R}^n is a subspace if

- It is closed under addition: $u + v \in V$ whenever $u \in V$ and $v \in V$.
- It is closed under scalar multiplication: $ku \in V$ whenever $u \in V$ and $k \in \mathbb{R}$.

Examples

- 1 $\{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\}$ is not a subspace of \mathbb{R}^3 . The vectors (1, 0, 0) and (0, 1, 0) belong to this set but their sum (1, 1, 0) does not.
- 2 $\{(x, y, z) \in \mathbb{R}^3 : (x, y, z) \cdot (1, 2, 3) = 0\}$ is a subspace of \mathbb{R}^3 .
- 3 $\{(x, y, z) \in \mathbb{R}^3 : (x, y, z) \cdot (1, 2, 3) \neq 0\}$ is not a subspace of \mathbb{R}^3 . For example, (1, 4, 1) and (-5, -2, -1) belong to this set but their sum (-4, 2, 0) does not.
- 4 The kernel of any linear transformation is a subspace.
- 5 The image of any linear transformation is a subspace.
- Exercise Prove these last two points.

Rachel Quinlan

How to make subspaces

Let $S = \{v_1, ..., v_k\}$ be any (finite) subset of \mathbb{R}^n .

The subset of \mathbb{R}^n consisting of all linear combinations of the elements of S is a subspace of \mathbb{R}^n , denoted by $\langle S \rangle$ or $\langle v_1, v_2, \dots, v_k \rangle$ and called the linear span (or just span) of S.

Proof (that $\langle S \rangle$ is a subspace).

Closed under addition: let $u, v \in \langle S \rangle$. Then $u = a_1v_1 + a_2v_2 + \cdots + a_kv_k$, and $v = c_1v_1 + c_2v_2 + \cdots + c_kv_k$, where the a_i and b_i are scalars. We need to show that $u + v \in \langle S \rangle$, which means showing that it is a linear combination of v_1, \ldots, v_k . This is straightforward after everything has been set up, since $u + v = (a_1 + c_1)v_1 + (a_2 + c_2)v_2 + \cdots + (a_k + c_k)v_k$. So *S* is closed under addition.

Closed under scalar multiplication: let $u \in \langle S \rangle$ and $c \in \mathbb{R}$. We need to show that cu is a linear combination of v_1, \ldots, v_k . We know that $u = a_1v_1 + a_2v_2 + \cdots + a_kv_k$, for scalars a_1, \ldots, a_k . Then $cu = ca_1v_1 + ca_2v_2 + \cdots + ca_kv_k$, so $cu \in \langle S \rangle$.

Spanning Sets

Let V be a subspace of \mathbb{R}^n (possibly V is all of \mathbb{R}^n). A subset S of V is called a spanning set of V if $\langle S \rangle = V$.

This means that every element of V is a linear combination of the elements of S.

Example The set $\{e_1, e_2, e_3\}$ is a spanning set of \mathbb{R}^3 , where (as usual) $e_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$, $e_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$. This is saying that every

element of \mathbb{R}^3 is a linear combination of e_1 , e_2 , e_3 . For example

$$\begin{bmatrix} 2\\-3\\4 \end{bmatrix} = 2e_1 - 3e_2 + 4e_3.$$

Remark A set S of three column vectors in \mathbb{R}^3 is a spanning set of \mathbb{R}^3 if and only if each of e_1 , e_2 , e_3 is a linear combination of elements of S. This occurs if and only if the 3×3 matrix whose columns are the vectors in S has an *inverse*.

Rachel Quinlan

- **1** Does \mathbb{R}^3 have a spanning set with fewer than three elements?
- 2 Does every spanning set of \mathbb{R}^3 have exactly three elements? **NO** (why not?)
- 3 Does every spanning set of ℝ³ contain one with exactly three elements?
- If V is a subspace of ℝ³, does V have a spanning set with at most three elements?
- **5** If V is a proper subspace of \mathbb{R}^3 (i.e. not all of \mathbb{R}^3) does V have a spanning set with fewer than three elements?

Note A pair of vectors in \mathbb{R}^3 (if they are not scalar multiples of each other) span a plane. Adding a third vector (if it does not lie in this plane) gives a spanning set for all of \mathbb{R}^3 .

Linear Dependence and Linear Independence

For a subset $\{v_1, \ldots, v_k\}$ of \mathbb{R}^n , suppose that v_k is a linear combination of v_1, \ldots, v_{k-1} . Then every linear combination of v_1, \ldots, v_k is "already" a linear combination of v_1, \ldots, v_{k-1} and

$$\langle v_1, \ldots, v_k \rangle = \langle v_1, \ldots, v_{k-1} \rangle.$$

If we are interested in the span of $\{v_1, ..., v_k\}$ we could throw away v_k and this would not change the span.

Definition A set of (at least two) vectors in \mathbb{R}^n is linearly dependent if one of its elements is a linear combination of the others. A set of vectors in \mathbb{R}^n is linearly independent if it is not linearly dependent.¹

Linear independence means that throwing away any element results in shrinking the span.

¹Small print: a set with just one vector is linearly independent, unless this vector is the zero vector. Any set that contains the zero vector is linearly dependent.

Example from Lecture 2

×1	+	3x2	+	5×3	_	9×4	=	5	1	3	5	-9	5		[1	0	$^{-1}$	3	2
3x1	_	×2	_	5 <i>x</i> 3	+	13 <i>x</i> 4	=	5	3	$^{-1}$	-5	13	5	\rightarrow	0	1	2	-4	1
2x1	_	3x2	_	8 <i>x</i> 3	+	18×4	=	1	2	-3	-8	18	1		0	0	0	0	0

The three equations of the system, or the three rows of the original augmented matrix, formed a *linearly dependent set*. One row was eliminated by adding a linear combination of the other two. All the information in the system was contained in just (any) two of the three equations.

Meaning of linear independence A set is linearly independent if none of its elements is a linear combination of the others.

This definition makes conceptual sense, but to use it as a test for linear independence would mean checking it separately for every element of the set - not so efficient. We have an alternative formulation for this purpose, which is logically equivalent but maybe a bit harder to read.

Rachel Quinlan

Test for linear independence

To decide if the set $\{v_1, ..., v_k\}$ is linearly independent, try to write the zero vector as a linear combination of the v_i :

$$\sum_{i=1}^{k} a_i v_i = a_1 v_1 + a_2 v_2 + \dots + a_k v_k = 0,$$

for scalars a_1, \ldots, a_k . If $a_i = 0$ for every *i* is the only solution, then v_1, \ldots, v_k are linearly independent. If there is another solution, they are linearly dependent.

Example Decide whether $\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$ is a linearly independent subset of \mathbb{R}^3 . Solution By row reduction we find $\begin{bmatrix} 1&1&1\\0&0&1\\1&-1&1 \end{bmatrix} \begin{bmatrix} a\\b\\c \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \Longrightarrow a = b = c = 0.$

Conclusion The set is linearly independent.

Rachel Quinlan