Lecture 10: Linear Transformations and Subspaces

February 15, 2024

Lecture 10: Linear Transformations and Subspaces

1 Linear Transformations
2 Matrix multiplication is composition of functions

3 The kernel and image
4 Subspaces
5 Spanning sets
6 Spanning Sets
7 Linearly Independent Sets

Linear Transformations

Linear transformations are the primary functions between vector spaces that are of interest in linear algebra. They are special because they cooperate with the algebraic structure.

Definition Let m and n be positive integers. A linear transformation T from \mathbb{R}^{n} to \mathbb{R}^{m} is a function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ that satisfies

■ $T(u+v)=T(u)+T(v)$, and

- $T(\lambda v)=\lambda T(v)$,
for all u and v in \mathbb{R}^{n}, and all scalars $\lambda \in \mathbb{R}$.

The Matrix of a Linear Transformation

Suppose that $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is a linear transformation, with

$$
T\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{r}
2 \\
-3
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right], T\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
-6 \\
7
\end{array}\right]
$$

Then for the vector in \mathbb{R}^{3} with any entries a, b, c
$T\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=a T\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+b T\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]+c T\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\underbrace{\left[\begin{array}{rrr}2 & 1 & -6 \\ -3 & 4 & 7\end{array}\right]}_{M_{T}}\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$.
and the 2×3 matrix M_{T} is called the (standard) matrix of A.

The matrix of a linear transformation

■ A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is represented by a $m \times n$ matrix M_{T}. The columns of M_{T} are the images under T of the standard basis vectors e_{1}, \ldots, e_{n}.
■ If v is any vector in \mathbb{R}^{n}, we can calculate $T(v)$ by multiplying the column vector v on the left by the matrix M_{T}. Matrix-vector multiplication is evaluating linear transformations.

- On the other hand, if A is any $m \times n$ matrix, then A determines a linear transformation $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by $v \rightarrow A v$, for $v \in \mathbb{R}^{n}$. So, in a sense, matrices are linear transformations.
- Examples of linear transformations include rotations, reflections and scaling, but not translations.
■ If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then in order to evaluate T at any point/vector, we only need $m n$ pieces of information, just the m coordinates of each of the n images of the standard basis vectors. This is very different for example from continuous functions from \mathbb{R} to \mathbb{R} - we cannot know all about them just by knowing their values at a few points.

Matrix multiplication is composition

Suppose that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ and $S: \mathbb{R}^{p} \rightarrow \mathbb{R}^{m}$ are linear transformations. Then $S \circ T(S$ after $T)$ is the linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} defined for $v \in \mathbb{R}^{n}$ by

$$
S \circ T(v)=S(T(v))
$$

Question How does the $(m \times n)$ matrix $M_{S \circ T}$ of $S \circ T$ depend on the $(m \times p)$ matrix M_{S} of S and the $(p \times n)$ matrix M_{T} of T ?
To answer this we have to think about the definition of $M_{S \circ T}$.
■ Its first column has the coordinates of $S \circ T\left(e_{1}\right)=S\left(T\left(e_{1}\right)\right)$.

- $T\left(e_{1}\right)$ is the first column of M_{T}.
- Then $S\left(T\left(e_{1}\right)\right)$ is the matrix-vector product $M_{S}[$ first column of M_{T}]. This is the first column of the matrix product $M_{S} M_{T}$.
■ Same for all the other columns: the conclusion is $M_{S \circ T}=M_{S} M_{T}$.
Matrix multiplication is composition of linear transformations.
Corollary Matrix multiplication is associative.

The Image and Kernel of a Linear Transformation

$T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is the linear transformation with $M_{T}=\left[\begin{array}{rrr}1 & 2 & 0 \\ 2 & -1 & 5 \\ 1 & 1 & 1\end{array}\right]$. The image of T is the subset of \mathbb{R}^{3} consisting of all elements $T(v)$, where $v \in \mathbb{R}^{3}$. This is the set of all vectors of the form

$$
a\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]+b\left[\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right]+c\left[\begin{array}{l}
0 \\
5 \\
1
\end{array}\right] .
$$

In matrix terms, this is the column space of M_{T}.
The kernel of T is the set of all vectors v in \mathbb{R}^{3} with $T(v)=0$. This is the set of all column vectors whose entries a, b, c satisfy

$$
\left[\begin{array}{rrr}
1 & 2 & 0 \\
2 & -1 & 5 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=a\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]+b\left[\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right]+c\left[\begin{array}{l}
0 \\
5 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

In matrix terms this is the (right) nullspace of M_{T}.

Example: The kernel is a line and the image is a plane

$$
\left[\begin{array}{rrr}
1 & 2 & 0 \\
2 & -1 & 5 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{rrr|r}
1 & 2 & 0 & 0 \\
2 & -1 & 5 & 0 \\
1 & 1 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 0 & 2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The kernel/nullspace is $\{(-2,1,1) t, t \in \mathbb{R}\}$ a line in \mathbb{R}^{3}.
That $(-2,1,1)$ is in the kernel of T means that (for example) Column 3 of M_{T} is a linear combination of Columns 1 and 2.

$$
-2\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]+1\left[\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right]+1\left[\begin{array}{l}
0 \\
5 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Longrightarrow\left[\begin{array}{l}
0 \\
5 \\
1
\end{array}\right]=2\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]-\left[\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right]
$$

It follows that every linear combination of all three columns of M_{T} is actually a linear combination just of Columns 1 and 2.
The column space of M_{T} is $\left.\left\{\begin{array}{l}a \\ 1 \\ 2 \\ 1\end{array}\right]+b\left[\begin{array}{r}2 \\ -1 \\ 1\end{array}\right]: a, b \in \mathbb{R}\right\}$, a plane in \mathbb{R}^{3}.

Subspaces

Definition A (non-empty) subset V of \mathbb{R}^{n} is a subspace if
■ It is closed under addition: $u+v \in V$ whenever $u \in V$ and $v \in V$.
■ It is closed under scalar multiplication: $k u \in V$ whenever $u \in V$ and $k \in \mathbb{R}$.

Examples

$1\left\{(x, y, z) \in \mathbb{R}^{3}: x+y+z=1\right\}$ is not a subspace of \mathbb{R}^{3}. The vectors $(1,0,0)$ and ($0,1,0$) belong to this set but their sum $(1,1,0)$ does not.
$2\left\{(x, y, z) \in \mathbb{R}^{3}:(x, y, z) \cdot(1,2,3)=0\right\}$ is a subspace of \mathbb{R}^{3}.
$3\left\{(x, y, z) \in \mathbb{R}^{3}:(x, y, z) \cdot(1,2,3) \neq 0\right\}$ is not a subspace of \mathbb{R}^{3}.
For example, $(1,4,1)$ and $(-5,-2,-1)$ belong to this set but their sum $(-4,2,0)$ does not.
4 The kernel of any linear transformation is a subspace.
5 The image of any linear transformation is a subspace.
Exercise Prove these last two points.

How to make subspaces

Let $S=\left\{v_{1}, \ldots, v_{k}\right\}$ be any (finite) subset of \mathbb{R}^{n}.
The subset of \mathbb{R}^{n} consisting of all linear combinations of the elements of S is a subspace of \mathbb{R}^{n}, denoted by $\langle S\rangle$ or $\left\langle v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ and called the linear span (or just span) of S.

Proof (that $\langle S\rangle$ is a subspace).
Closed under addition: let $u, v \in\langle S\rangle$. Then $u=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{k} v_{k}$, and $v=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k}$, where the a_{i} and b_{i} are scalars. We need to show that $u+v \in\langle S\rangle$, which means showing that it is a linear combination of v_{1}, \ldots, v_{k}. This is straightforward after everything has been set up, since $u+v=\left(a_{1}+c_{1}\right) v_{1}+\left(a_{2}+c_{2}\right) v_{2}+\cdots+\left(a_{k}+c_{k}\right) v_{k}$. So S is closed under addition.

Closed under scalar multiplication: let $u \in\langle S\rangle$ and $c \in \mathbb{R}$. We need to show that $c u$ is a linear combination of v_{1}, \ldots, v_{k}. We know that $u=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{k} v_{k}$, for scalars a_{1}, \ldots, a_{k}. Then $c u=c a_{1} v_{1}+c a_{2} v_{2}+\cdots+c a_{k} v_{k}$, so $c u \in\langle S\rangle$.

Spanning Sets

Let V be a subspace of \mathbb{R}^{n} (possibly V is all of \mathbb{R}^{n}). A subset S of V is called a spanning set of V if $\langle S\rangle=V$.
This means that every element of V is a linear combination of the elements of S.
Example The set $\left\{e_{1}, e_{2}, e_{3}\right\}$ is a spanning set of \mathbb{R}^{3}, where (as usual)
$e_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], e_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], e_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. This is saying that every
element of \mathbb{R}^{3} is a linear combination of e_{1}, e_{2}, e_{3}. For example

$$
\left[\begin{array}{r}
2 \\
-3 \\
4
\end{array}\right]=2 e_{1}-3 e_{2}+4 e_{3}
$$

Remark A set S of three column vectors in \mathbb{R}^{3} is a spanning set of \mathbb{R}^{3} if and only if each of e_{1}, e_{2}, e_{3} is a linear combination of elements of S.
This occurs if and only if the 3×3 matrix whose columns are the vectors in S has an inverse.

Questions about Spanning Sets

1 Does \mathbb{R}^{3} have a spanning set with fewer than three elements?
2 Does every spanning set of \mathbb{R}^{3} have exactly three elements? NO (why not?)
3 Does every spanning set of \mathbb{R}^{3} contain one with exactly three elements?
4 If V is a subspace of \mathbb{R}^{3}, does V have a spanning set with at most three elements?
5 If V is a proper subspace of \mathbb{R}^{3} (i.e. not all of \mathbb{R}^{3}) does V have a spanning set with fewer than three elements?
Note A pair of vectors in \mathbb{R}^{3} (if they are not scalar multiples of each other) span a plane. Adding a third vector (if it does not lie in this plane) gives a spanning set for all of \mathbb{R}^{3}.

Linear Dependence and Linear Independence

For a subset $\left\{v_{1}, \ldots, v_{k}\right\}$ of \mathbb{R}^{n}, suppose that v_{k} is a linear combination of v_{1}, \ldots, v_{k-1}. Then every linear combination of v_{1}, \ldots, v_{k} is "already" a linear combination of v_{1}, \ldots, v_{k-1} and

$$
\left\langle v_{1}, \ldots, v_{k}\right\rangle=\left\langle v_{1}, \ldots, v_{k-1}\right\rangle .
$$

If we are interested in the span of $\left\{v_{1}, \ldots, v_{k}\right\}$ we could throw away v_{k} and this would not change the span.

Definition A set of (at least two) vectors in R^{n} is linearly dependent if one of its elements is a linear combination of the others.
A set of vectors in R^{n} is linearly independent if it is not linearly dependent. ${ }^{1}$

Linear independence means that throwing away any element results in shrinking the span.

[^0]
[^0]: ${ }^{1}$ Small print: a set with just one vector is linearly independent, unless this vector is the zero vector. Any set that contains the zero vector is linearly dependent.

