Section 1.4 Techniques of Integration

To calculate

$$
\int_{a}^{b} f(x) d x
$$

1 Find a function F for which $F^{\prime}(x)=f(x)$, i.e. find a function F whose derivative is f.

2 Evaluate F at the limits of integration a and b; i.e. calcuate $F(a)$ and $F(b)$. This means replacing x separately with a and b in the formula that defines $F(x)$.
3 Calculate the number $F(b)-F(a)$. This is the definite integral $\int_{a}^{b} f(x) d x$.
Of the three steps above, the first one is the hard one.

Notation

Recall the following notation: if F is a function that satisfies $F^{\prime}(x)=f(x)$, then

$$
\left.F(x)\right|_{a} ^{b} \text { or }\left.F(x)\right|_{x=a} ^{x=b} \text { means } F(b)-F(a) .
$$

Definition 14

Let f be a function. Another function F is called an antiderivative of f if the derivative of F is f, i.e. if $F^{\prime}(x)=f(x)$, for all (relevant) values of the variable x.

So for example x^{2} is an antiderivative of $2 x$. Note that $x^{2}+1, x^{2}+5$ and $x^{2}-20 e$ are also antiderivatives of $2 x$. So we talk about an antiderviative of a function or expression rather that the antiderivative.

The Indefinite Integral

Definition 15

Let f be a function. The indefinite integral of f, written

$$
\int f(x) d x
$$

is the "general antiderivative" of f. If $F(x)$ is a particular antiderivative of f, then we would write

$$
\int f(x) d x=F(x)+C
$$

to indicate that the different antiderivatives of f look like $F(x)+C$, where C may be any constant. (In this context C is often referred to as a constant of integration).

Examples

Example 16

Determine $\int \cos 2 x d x$.
Solution: The question is: what do we need to differentiate to get $\cos 2 x$?
Well, what do we need to differentiate to get something involving cos?

Examples

Example 16

Determine $\int \cos 2 x d x$.
Solution: The question is: what do we need to differentiate to get $\cos 2 x$? Well, what do we need to differentiate to get something involving cos? The derivative of $\sin x$ is $\cos x$. A reasonable guess would say that the derivative of $\sin 2 x$ might be "something like" $\cos 2 x$.

Examples

Example 16

Determine $\int \cos 2 x d x$.
Solution: The question is: what do we need to differentiate to get $\cos 2 x$?
Well, what do we need to differentiate to get something involving cos? The derivative of $\sin x$ is $\cos x$. A reasonable guess would say that the derivative of $\sin 2 x$ might be "something like" $\cos 2 x$.
By the chain rule, the derivative of $\sin 2 x$ is in fact $2 \cos 2 x$.
So $\sin 2 x$ is pretty close but it gives us twice what we want - we should compensate for this by taking $\frac{1}{2} \sin 2 x$; its derivative is

$$
\frac{1}{2}(2 \cos 2 x)=\cos 2 x
$$

Conclusion: $\int \cos 2 x d x=\frac{1}{2} \sin 2 x+C$

Example 17

Determine $\int x^{n} d x$
Important Note: We know that in order to calculate the derivative of an expression like x^{n}, we reduce the index by 1 to $n-1$, and we multiply by the constant n. So

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

in general. To find an antiderivative of x^{n} we have to reverse this process. This means that the index increases by 1 to $n+1$ and we multiply by the constant $\frac{1}{n+1}$. So

$$
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C
$$

This makes sense as long as the number n is not equal to -1 (in which case the fraction $\frac{1}{n+1}$ wouldn't be defined).

The Integral of $\frac{1}{x}$

Suppose that $x>0$ and $y=\ln x$. Recall this means (by definition) that $e^{y}=x$. Differentiating both sides of this equation (with respect to x) gives

$$
e^{y} \frac{d y}{d x}=1 \Longrightarrow \frac{d y}{d x}=\frac{1}{e^{y}}=\frac{1}{x} .
$$

Thus the derivative of $\ln x$ is $\frac{1}{x}$, and

$$
\int \frac{1}{x} d x=\ln x+C, \text { for } x>0
$$

If $x<0$, then

$$
\int \frac{1}{x} d x=\ln |x|+C
$$

This latter formula applies for all $x \neq 0$.

A definite integral

Example 18
Determine $\int_{0}^{\pi} \sin x+\cos x d x$.
Solution: We need to write down any antiderivative of $\sin x+\cos x$ and evaluate it at the limits of integration :

$$
\begin{aligned}
\int_{0}^{\pi} \sin x+\cos x d x & =-\cos x+\left.\sin x\right|_{0} ^{\pi} \\
& =(-\cos \pi+\sin \pi)-(-\cos 0+\sin 0) \\
& =-(-1)+0-(-1+0)=2
\end{aligned}
$$

A definite integral

Example 18

Determine $\int_{0}^{\pi} \sin x+\cos x d x$.
Solution: We need to write down any antiderivative of $\sin x+\cos x$ and evaluate it at the limits of integration :

$$
\begin{aligned}
\int_{0}^{\pi} \sin x+\cos x d x & =-\cos x+\left.\sin x\right|_{0} ^{\pi} \\
& =(-\cos \pi+\sin \pi)-(-\cos 0+\sin 0) \\
& =-(-1)+0-(-1+0)=2
\end{aligned}
$$

Note: To determine $\cos \pi$, start at the point $(1,0)$ and travel counter-clockwise along the the unit circle for a distance of π, arriving at the point $(-1,0)$. The x-coordinate of the point you are at now is $\cos \pi$, and the y-coordinate is $\sin \pi$.

1.4.1 Substitution - Reversing the Chain Rule

The Chain Rule of Differentation tells us that in order to differentiate the expression $\sin x^{2}$, we should regard this expression as \sin ("something") whose derivative (with respect to "something") is $\cos ($ "something"), then multiply this expression by the derivative of the "something" with respect to x. Thus

$$
\frac{d}{d x}\left(\sin x^{2}\right)=\cos x^{2} \frac{d}{d x}\left(x^{2}\right)=2 x \cos x^{2} .
$$

1.4.1 Substitution - Reversing the Chain Rule

The Chain Rule of Differentation tells us that in order to differentiate the expression $\sin x^{2}$, we should regard this expression as \sin ("something") whose derivative (with respect to "something") is $\cos ($ "something"), then multiply this expression by the derivative of the "something" with respect to x. Thus

$$
\frac{d}{d x}\left(\sin x^{2}\right)=\cos x^{2} \frac{d}{d x}\left(x^{2}\right)=2 x \cos x^{2} .
$$

Equivalently

$$
\int 2 x \cos x^{2} d x=\sin x^{2}+C
$$

In this section, through a series of examples, we consider how one might go about reversing the differentiation process to get from $2 x \cos x^{2}$ back to $\sin x^{2}$.

How Substitution Works

Example 19

Determine $\int 2 x \sqrt{x^{2}+1} d x$.

Solution Notice that the integrand involves both the expressions $x^{2}+1$ and $2 x$. Note also that $2 x$ is the derivative of $x^{2}+1$.
1 Introduce the notation u and set $u=x^{2}+1$.
2 Note $\frac{d u}{d x}=2 x$; rewrite this as $d u=2 x d x$.
3 Then

$$
\int 2 x \sqrt{x^{2}+1} d x=\int \sqrt{x^{2}+1}(2 x d x)=\int u^{\frac{1}{2}} d u=\frac{2}{3} u^{\frac{3}{2}}+C .
$$

4 So

$$
\int 2 x \sqrt{x^{2}+1} d x=\frac{2}{3}\left(x^{2}+1\right)^{\frac{3}{2}}+C .
$$

Substitution and definite integrals

Example 20

Determine $\int_{0}^{\pi} \cos ^{3} x \sin x d x$ (from 2015 Summer paper)
Solution: Write $u=\cos x$. Then

$$
\frac{d u}{d x}=-\sin x, \quad d u=-\sin x d x, \quad \sin x d x=-d u
$$

Change variables: $\int_{0}^{\pi} \cos ^{3} x \sin x d x=-\int_{x=0}^{x=\pi} u^{3} d u$. Limits of integration: When $x=0, u=\cos x=\cos 0=1$. When $x=\pi$, $u=\cos x=\cos \pi=-1$. Our integral becomes:

$$
\int_{u=1}^{u=-1} u^{3} d u=\left.\frac{u^{4}}{4}\right|_{u=-1} ^{u=1}=\frac{1}{4}-\frac{(-1)^{4}}{4}=0
$$

Substitution and Definite Integrals - more examples

Example 21

Evaluate $\int_{0}^{1} \frac{5 r}{\left(4+r^{2}\right)^{2}} d r$.
Solution To find an antiderivative, let $u=4+r^{2}$.
Then $\frac{d u}{d r}=2 r, d u=2 r d r ; 5 r d r=\frac{5}{2} d u$.
So

$$
\int \frac{5 r}{\left(4+r^{2}\right)^{2}} d r=\frac{5}{2} \int \frac{1}{u^{2}} d u=\frac{5}{2} \int u^{-2} d u
$$

Thus

$$
\int \frac{5 r}{\left(4+r^{2}\right)^{2}} d r=-\frac{5}{2} \times \frac{1}{u}+C
$$

and we need to evaluate $-\frac{5}{2} \times \frac{1}{u}$ at $r=0$ and at $r=1$. We have two choices.

1 Write $u=4+r^{2}$ to obtain

$$
\begin{aligned}
\int_{0}^{1} \frac{5 r}{\left(4+r^{2}\right)^{2}} d r & =-\frac{5}{2} \times\left.\frac{1}{4+r^{2}}\right|_{r=0} ^{r=1} \\
& =-\frac{5}{2} \times \frac{1}{4+1^{2}}-\left(-\frac{5}{2} \times \frac{1}{4+0^{2}}\right) \\
& =-\frac{5}{2} \times \frac{1}{5}+\frac{5}{2} \times \frac{1}{4} \\
& =\frac{1}{8} .
\end{aligned}
$$

2. Alternatively, write the antiderivative as $-\frac{5}{2} \times \frac{1}{U}$ and replace the limits of integration with the corresponding values of u.
When $r=0$ we have $u=4+0^{2}=4$.
When $r=1$ we have $u=4+1^{2}=5$.
Thus

$$
\begin{aligned}
\int_{0}^{1} \frac{5 r}{\left(4+r^{2}\right)^{2}} d r & =-\frac{5}{2} \times\left.\frac{1}{u}\right|_{u=4} ^{u=5} \\
& =-\frac{5}{2} \times \frac{1}{5}-\left(-\frac{5}{2} \times \frac{1}{4}\right) \\
& =\frac{1}{8}
\end{aligned}
$$

From Summer Exam 2013

Example 22

Determine

$$
\int_{1}^{4} \frac{1}{x+\sqrt{x}} d x
$$

Solution: Write

$$
\int_{1}^{4} \frac{1}{x+\sqrt{x}} d x=\int_{1}^{4} \frac{1}{\sqrt{x}(\sqrt{x}+1)} d x
$$

Now write $u=\sqrt{x}+1$. Then $\frac{d u}{d x}=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2} \frac{1}{\sqrt{x}} \Longrightarrow \frac{1}{\sqrt{x}} d x=2 d u$.
Then

$$
\begin{aligned}
\int_{1}^{4} \frac{1}{\sqrt{x}(\sqrt{x}+1)} d x & =\int_{x=1}^{x=4} \frac{2}{u} d u=\int_{u=2}^{u=3} \frac{2}{u} d u=\left.2 \ln u\right|_{2} ^{3} \\
& =2(\ln 3-\ln 2)=2 \ln \frac{3}{2}
\end{aligned}
$$

More Examples

Example 23

Determine $\int(1-\cos t)^{2} \sin t d t$

More Examples

Example 23

Determine $\int(1-\cos t)^{2} \sin t d t$
Question: How do we know what expression to extract and refer to as u ? Really what we are doing in this process is changing the integration problem in the variable t to a (hopefully easier) integration problem in a new variable u - there is a change of variables taking place.

More Examples

Example 23

Determine $\int(1-\cos t)^{2} \sin t d t$
Question: How do we know what expression to extract and refer to as u ? Really what we are doing in this process is changing the integration problem in the variable t to a (hopefully easier) integration problem in a new variable u - there is a change of variables taking place.
There is no easy answer but with practice we can develop a sense of what might work. In this example the integrand involves the expression $1-\cos t$ and also its derivative $\sin t$. This is what makes the substitution $u=1-\cos t$ effective for this problem.

NOTE: There are more examples of the substitution technique in the lecture notes.

