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Orthogonality in Rn

Recall For a pair of (non-zero) vectors u and v in R2 or R3, the directed
line segments that they represent are orthogonal (perpendicular) to each
other (u ⊥ v) if and only if their scalar product u · v = 0.

Definition For vectors u = [a1 a2 ... an] and v = [b1 b2 ... bn] in Rn,
their scalar product (or dot product) is the number defined by

u · v = a1b1 + · · ·+ anbn =
n∑

i=1

aibi .

Example
[1 3 − 2] ⊥ [0 4 6] in R3, since 1(0) + (3)(4) + (−2)(6) = 0.
[5 1 − 2 2] and [3 − 1 9 2] are orthogonal in R4.

Although the geometry is harder to visualize, the scalar product gives us
an algebraic concept of orthogonality in Rn.
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Geometric meaning of a linear equation

Question What does the subset P of R3 consisting of all points whose
coordinates satisfy 2x + 4y − 3z = 0 look like?

2x + 4y − 3z = 0

⇐⇒ [2 4 − 3] · [x y z ] = 0

⇐⇒ [x y z ] ⊥ [2 4 − 3]

So P consists of all points whose coordinates represent vectors
orthogonal to [2 4 − 3]. This is a plane, it looks like a copy of R2 inside
R3, including the origin, and oriented so that it is perpendicular to its
normal vector [2 4 − 3].

The points in Rn whose coordinates satisfy a1x1 + a2x2 + ... anxn = 0 are
the vectors orthogonal to n = [a1, a2, ... , an]. They form a hyperplane in
Rn, also called the orthogonal complement of n and denoted n⊥. This
“looks like” a copy of Rn−1 inside Rn, passing through the origin.
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What if the right hand side is not zero?

What about the set Q of points in R3 whose coordinates satisfy
2x + 4y − 3x = 2? What does it look like?

We can write an example of such a point, [1 0 0] is one. Or [2 1 2].

[x y z]∈Q ⇐⇒ [2 4 −3]·[x y z]=2=[2 4 −3]·[2 1 2]

⇐⇒ [2 4 −3]·([x y z]−[2 1 2])=0

⇐⇒ [2 4 −3]⊥([x y z]−[2 1 2])=0

⇐⇒ Q=[2 1 2]+P,

Where P is the plane with equation
2x + 4y − 3x = 0.

Conclusion: Q is obtained from P by adding [2 1 2] (or any vector that
belongs to Q) to every vector in P. This means Q is the plane parallel to
P that passes through the point (2, 1, 2).
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Intersecting planes in R3

Think about a system of linear equations in the variables x , y , z .
The set of points that satisfy any one equation is a plane in R3.
Solutions of the system are points that belong to all the planes. A pair of
planes in R3 can intersect in three ways.

1 No intersection,

2x + y − 3z = 1
2x + y − 3z = 2

2 The two planes are identical,

2x + y − 3z = 1
4x + 2y − 6z = 2

3 The two planes intersect in a line, (the
“expected” situation)

x + y − 3z = 1
x − y + 2z = 2
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Intersection of a plane and a line in R3

Given a line and a plane in R3, we “expect” that they intersect in one
point. But the plane can contain the line, or they can have no point in
common.

If n is a normal vector to the plane and v is a vector along the line, then

n · v 6= 0 in the first case.

n · v = 0 in the second and third cases.
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Intersection of three planes in R3

Given three planes in R3, the “expected” situation is that the first two
intersect in a line and this line interesects the third in a single point. So
there is one point belonging to all three.
But the three planes could all intersect in a line. Or they could have
empty intersection, if two of them are parallel, or if each pair intersects in
a line but these three lines are parallel.

The system consisting of the equations of the three planes has

A unique solution in the first case.

One free variable in the second case, and infinitely many solutions.

No solution in the third or fourth case.
Dr Rachel Quinlan MA203/283 Lecture 5 8 / 10



A system of equations in n variables

Each equation represents a hyperplane in Rn. The “expected” situation
is

that the system consisting of the first two equations is consistent
with n− 2 free variables - but it could be inconsistent, or it could be
that the first two equations represent the same hyperplane

that the addition of the next equation (at each step) reduces the
number of free variables by one, until we have a unique solution
after n equations. But at any stage, the addition of the next
equation could introduce an inconsistency, or it could be that every
simultaneous solution so far is also a solution of the next equation.

If there are more eqautions than variables, we expect that there is
no solution, but there might be.

Exercise Write down examples of systems (with three or four variables)
where each of these possibilities occurs.
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Another look at the example from Lecture 3

(a) Find the general solution of the following system of linear equations.

x1 + 3x2 + 2x3 + 3x4 = 6
2x1 − x2 + x3 + 8x4 = −1
2x1 + 2x2 + 3x3 + 10x4 = 6

Solution: (x1, x2, x3, x4) = (−1, 1, 2, 0) + t(−1, 2,−4, 1), a line in R4

(c) Find the unique solution of the following system of linear equations.

x1 + 3x2 + 2x3 + 3x4 = 6
2x1 − x2 + x3 + 8x4 = −1
2x1 + 2x2 + 3x3 + 10x4 = 6
x1 − 2x2 + x3 − x4 = 9

Solution: (x1, x2, x3, x4) = (0,−1, 6,−1).
Adding the fourth equation specifies one point from the line of
simultaneous solutions to the first three.
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