Lecture 4: Visualizing the solution to a linear system

January 25, 2024

Lecture 4: Visualizing solutions of linear systems

1 Euclidean n-space

2 Algebra and Geometry

Euclidean space

Definition A column vector (with n entries) is a $n \times 1$ matrix (a matrix with n entries arranged in one column). A row vector is a matrix with one row.

Definition Euclidean n-dimensional space \mathbb{R}^{n} is the set of all (row or column $)^{1}$ vectors with n entries.

Examples

[14-2] is a row vector in \mathbb{R}^{3}. $[0, \pi,-\sqrt{2}, 1,20]$ is a row vector in \mathbb{R}^{5} (commas are optional).
$\left[\begin{array}{r}3 \\ -4 \\ -2 \\ 5.4\end{array}\right]$ is a column vector in \mathbb{R}^{4}.

Remark \mathbb{R}^{2} and \mathbb{R}^{3} are equipped with orthogonal coordinate axes that we know well. It is useful to imagine \mathbb{R}^{n} as having n orthogonal coordinate axes, even though we can't fit them in our physical environment (more later on that).
${ }^{1}$ we can decide on any occasion if we mean row or column vectors, that will be ok as long as we are consistent within the discussion

Addition and Scalar Multiplication in \mathbb{R}^{n}

If $u, v \in \mathbb{R}^{n}$, we define $u+v$ to be the vector that we get by adding the coordinates of u and v. For example in \mathbb{R}^{3}

$$
\left[\begin{array}{lll}
1 & 5 & -2
\end{array}\right]+\left[\begin{array}{lll}
-2 & 3 & 2
\end{array}\right]=\left[\begin{array}{ll}
1+(-2) & 5+3
\end{array}-2+2\right]=\left[\begin{array}{lll}
-1 & 8 & 0
\end{array}\right] .
$$

We can multiply a vector by a scalar (number), just multiply all the coordinates: $4\left[\begin{array}{lll}1 & 3 & -1\end{array}\right]=\left[\begin{array}{lll}4 & 12 & -4\end{array}\right]$. Geometrically:

Solution set of a system with two free variables

Recall from Lecture 2 The system

$$
\begin{array}{r}
x_{1}+3 x_{2}+5 x_{3}-9 x_{4}=5 \\
3 x_{1}-x_{2}-5 x_{3}+13 x_{4}=5 \\
2 x_{1}-3 x_{2}-8 x_{3}+18 x_{4}=1
\end{array}
$$

has general solution

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2,1,0,0)+s(1,-2,1,0)+t(-3,4,0,1), s, t \in \mathbb{R}
$$

What does this look like as a subset of \mathbb{R}^{4} ?
It consists all points that we can get by adding a scalar multiple of $u=(1,-2,1,0)$ and a scalar multiple of $v=(-3,4,0,1)$ to $(2,1,0,0)$. Just $(2,1,0,0)+s(1,-2,1,0)$ would give us the line through $(2,1,0,0)$ parallel to the vector $\left[\begin{array}{llll}1 & -2 & 1 & 0\end{array}\right]$.
Allowing the addition of any multiple of $[-3,4,0,1]$ to any point on this line gives us a plane; it looks like a copy of \mathbb{R}^{2} inside \mathbb{R}^{4}.

Putting Descartes before the horse .

Coordinate geometry was invented by René Descartes in the first half of the 17th Century (possibly independently by other people). It allows us to interpret a (row or column) vector as either

- the point whose coordinates are the entries of the vector, or
- the line segment directed from the origin to that point.

The coordinate setup means that any equation involving variables x, y, z or $x_{1}, x_{2}, \ldots, x_{n}$ (like $x^{2}+y^{3}-2 z=0$, or the linear equation $2 x_{1}-3 x_{2}+4 x_{3}+x_{4}=2$) can be interpreted as a geometric object in the relevant \mathbb{R}^{n}, consisting of all those points whose coordinates satisfy the equation.

Figuring out what this looks like is generally difficult, but for linear equations it's ok. Finding the simultaneous solutions of a bunch of equations means finding the intersection of the corresponding geometric objects.

