Lecture 2: How to present the solution to a linear system

December 12, 2023

1 An Example

2 Important terminology

- Reduced row echelon form (RREF)

■ Leading variables and free variables

3 Writing the solution to a system with free variables

Example: Solve the following linear system

$$
\begin{array}{r}
x_{1}+3 x_{2}+5 x_{3}-9 x_{4}=5 \\
3 x_{1}-x_{2}-5 x_{3}+13 x_{4}=5 \\
2 x_{1}-3 x_{2}-8 x_{3}+18 x_{4}=1
\end{array}
$$

$$
\left[\begin{array}{rrrrr}
1 & 3 & 5 & -9 & 5 \\
3 & -1 & -5 & 13 & 5 \\
2 & -3 & -8 & 18 & 1
\end{array}\right] \quad \begin{gathered}
R 2 \rightarrow R 2-3 R 1 \\
\longrightarrow
\end{gathered} \quad\left[\begin{array}{rrrrr}
1 & 3 & 5 & -9 & 5 \\
0 & -10 & -20 & 40 & -10 \\
0 & -9 & -18 & 36 & -9
\end{array}\right]
$$

$$
\left.\xrightarrow{R 2 \times\left(-\frac{1}{10}\right)}\left[\begin{array}{rrrrr}
1 & 3 & 5 & -9 & 5 \\
0 & 1 & 2 & -4 & 1 \\
0 & -9 & -18 & 36 & -9
\end{array}\right] \quad \begin{array}{rl}
\longrightarrow
\end{array} \quad \longrightarrow \begin{array}{rrrrr}
1 & 3 & 5 & -9 & 5 \\
0 & 1 & 2 & -4 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\xrightarrow{R 1 \rightarrow R 1-3 R 2}\left[\begin{array}{rrrrr}
1 & 0 & -1 & 3 & 2 \\
0 & 1 & 2 & -4 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \text { RREF } \checkmark \quad \quad\binom{\text { Reduced row }}{\text { echelon form }}
$$

How to read the solution from the RREF

$$
\left.\left[\begin{array}{rrrr|r}
1 & 0 & -1 & 3 & 2 \\
0 & 1 & 2 & -4 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \begin{array}{lllllll}
\text { Equation 1: } & \mathbf{x}_{1} & & - & x_{3} & + & 3 x_{4} \\
\text { Equation 2: } & & \mathbf{x}_{2} & 2 \\
\text { Equation 3: } & (& & & & & 0
\end{array}\right)
$$

- Equation 1 says $x_{1}=2+x_{3}-3 x_{4}$
- Equation 2 says $x_{2}=1-2 x_{3}+4 x_{4}$

■ Equation 3 has no content (an unexpected feature of this example).
A solution of the system must only satisfy $x_{1}=2+x_{3}-3 x_{4}$ and $x_{2}=1-2 x_{3}+4 x_{4}$, with no restriction on the values of x_{3} and x_{4}.

We write s and t for the values of x_{3} and x_{4} in a solution of the system.

General Solution $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2+s-3 t, 1-2 s+4 t, s, t), s, t \in \mathbb{R}$

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2+s-3 t, 1-2 s+4 t, s, t), s, t \in \mathbb{R}
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrr|r}
1 & 0 & -1 & 3 & 2 \\
0 & 1 & 2 & -4 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \begin{array}{llllllll}
\text { Equation 1: } & \mathbf{x}_{1} & & - & x_{3} & + & 2 x_{4} & = \\
\text { Equation 2: } & & \mathbf{x}_{2} & + & 2 x_{3} & - & 4 x_{4} & = \\
\text { Equation 3: } & (& & & & & 0 & = \\
x_{1} & x_{2} & x_{3} & x_{4} & R H S
\end{array}} \\
& x_{1}
\end{aligned}
$$

The general solution is a concise description of all of the infinitely many solutions of the simplified system, and the original one. Particular solutions arise by specifying s and t in the general solution. For example

$$
\begin{aligned}
& \square s=0, t=0\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2+0-0,1-0+0,0,0)=(2,1,0,0) \\
& \square s=1, t=0\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2+1-0,1-2+0,1,0)=(3,-1,1,0) \\
& \square s=5, t=10\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2+5-30,1-10+40,5,10)=(-23,31,5,10)
\end{aligned}
$$

Exercise Check that these (and more examples that you write down) are solutions of the original system:

$$
\begin{array}{r}
x_{1}+3 x_{2}+5 x_{3}-9 x_{4}=5 \\
3 x_{1}-x_{2}-5 x_{3}+13 x_{4}=5 \\
2 x_{1}-3 x_{2}-8 x_{3}+18 x_{4}=1
\end{array}
$$

Some vocabulary and definitions

$$
\left[\begin{array}{rrrrr}
1 & 3 & 5 & -9 & 5 \\
3 & -1 & -5 & 13 & 5 \\
2 & -3 & -8 & 18 & 1
\end{array}\right] \quad \begin{gathered}
\text { Elementary Row Operations } \\
\text { Gauss-Jordan elimination }
\end{gathered}\left[\begin{array}{rrrrr}
1 & 0 & -1 & 3 & 2 \\
0 & 1 & 2 & -4 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The second matrix is in reduced row echelon form (RREF). This means
1 Every row that is not all zeros has 1 as its first non-zero entry.
2 Every column that contains a leading 1 has 0 in all other positions.
3 The leading 1 s go left to right as we move down through the rows.
4 Any rows that are all zeros are at the bottom.
Remark A matrix is in row echelon form has the above properties except that leading 1 's can have non-zero entries above them in their columns.

Example This matrix is in REF, not RREF. Every RREF is a REF. Not every REF is a RREF.
$\left[\begin{array}{rrrrrr}1 & 2 & 3 & 0 & 4 & -2 \\ 0 & 1 & 5 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 20\end{array}\right]$

Leading variables and free variables

$$
\begin{array}{r}
x_{1}+3 x_{2}+5 x_{3}-9 x_{4}=5 \\
3 x_{1}-x_{2}-5 x_{3}+13 x_{4}=5 \\
2 x_{1}-3 x_{2}-8 x_{3}+18 x_{4}
\end{array} \quad 1 \quad \longrightarrow \quad\left[\begin{array}{rrrr|r}
1 & 0 & -1 & 3 & 2 \\
0 & 1 & 2 & -4 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Leading 1 s in the RREF occur in the columns of the variables x_{1} and x_{2}. The columns of x_{3} and x_{4} do not contain leading 1 s .

Definition Any variables whose columns in the RREF do not contain leading 1 s are called free variables. Variables whose columns do contain leading 1 s are called leading variables.

In this example, x_{1} and x_{2} are leading variables, x_{3} and x_{4} are free. In a solution, a free variable can take on any value.
Each non-zero row of the RREF describes how the value of one leading variable depends on those of the free variables. ${ }^{1}$
${ }^{1}$ See notes on inconsistent systems later

How to write the solution

$$
\begin{array}{r}
x_{1}+3 x_{2}+5 x_{3}-9 x_{4}=5 \\
3 x_{1}-x_{2}-5 x_{3}+13 x_{4}=5 \\
2 x_{1}-3 x_{2}-8 x_{3}+18 x_{4}
\end{array} \quad 1 \quad \longrightarrow \quad\left[\begin{array}{rrrr|r}
1 & 0 & -1 & 3 & 2 \\
0 & 1 & 2 & -4 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

1 Give independent parameter names to the values of the free variables in a solution. Write (something like) The values of the free variables x_{3} and x_{4} in a solution of the system are denoted s and t.
2 Read, from the RREF, how the corresponding values of the leading variables depend on s and t. State the general solution

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2+s-3 t, 1-2 s+4 t, s, t), s, t \in \mathbb{R}
$$

Note: the last part $(s, t \in \mathbb{R})$ is an essential (not optional) part of the statement. It tells the reader what values s and t may have.
3 Alternative version of the statement (either form is fine):

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2,1,0,0)+s(1,-2,1,0)+t(-3,4,0,1), s, t \in \mathbb{R}
$$

This version has a geometric meaning - more on that in Lecture 4.

